Quantum.

File System API Guide

StorNext 4.3.x

6-67399-05 Rev. B

Quantum StorNext 4.3.x File System APl Guide, 6-67399-05, Rev. B, April 2013, Product of USA.

Quantum Corporation provides this publication “as is” without warranty of any kind, either express or implied,
including but not limited to the implied warranties of merchantability or fitness for a particular purpose. Quantum
Corporation may revise this publication from time to time without notice.

COPYRIGHT STATEMENT

© 2013 Quantum Corporation. All rights reserved. Your right to copy this manual is limited by copyright law.
Making copies or adaptations without prior written authorization of Quantum Corporation is prohibited by law and
constitutes a punishable violation of the law.

TRADEMARK STATEMENT

Quantum, the Quantum logo, DLT, DLTtape, the DLTtape logo, Scalar, StorNext, the DLT logo, DXi, GoVault, SDLT,
StorageCare, Super DLTtape, and SuperLoader are registered trademarks of Quantum Corporation in the U.S. and
other countries. Protected by Pending and Issued U.S. and Foreign Patents, including U.S. Patent No. 5,990,810. LTO
and Ultrium are trademarks of HP, IBM, and Quantum in the U.S. and other countries. All other trademarks are the
property of their respective companies. Specifications are subject to change without notice.

StorNext utilizes the following components which are copyrighted by their respective entities:

ACSAPI, copyright © Storage Technology Corporation; Java, copyright © Oracle Corporation; LibICE, LibSM,
LibXau, LibXdmcp, LibXext, LibXi copyright The Open Group; LibX11copyright The Open Group, MIT, Silicon
Graphics, and the Regents of the University of California, and copyright (C) 1994-2002 The XFree86 Project,
Inc. All Rights Reserved. And copyright (c) 1996 NVIDIA, Corp. NVIDIA design patents pending in the U.S. and
foreign countries.; Libxml2 and LibXdmcp, copyright MIT; MySQL, copyright © Oracle Corporation; Ncurses,
copyright © 1997-2009,2010 by Thomas E. Dickey <dickey@invisible-island.net>. All Rights Reserved.; TCL/TK,
copyright © Sun Microsystems and the Regents of the University of California; vixie-cron: copyright Internet
Systems Consortium (ISC); Wxp-tdi.h, copyright © Microsoft Corporation; Zlib, copyright © 1995-2010 Jean-
loup Gailly and Mark Adler without notice.

ii File System APl Guide

mailto:dickey@invisible-island.net

Contents

Chapter 1 Introduction 1
About This Guide. 1
Installing StorNext APIs e 2
Running APIsRemotely 2
Explanation of Warnings, Cautionsand Notes. 2
Quantum Service and Support 3

Chapter 2 StorNext File System APIs 5
Allocation and Space Management APIs 7
CvApi AllocSpace e 8
CvApi_GetPerfectFitStatus. 11
CvApi_PunchHole 11
CvApi_SetFileSize 13

CvAPI VerifyAlloco 14

Quality of Service and Real Timel/OAPIs. 15
CvApi_DisableRtio. 16
CvApi_EnableRtio 16
CvApi_GetRtio. 17

CVApI_ GetREIO V3. ...t 18
CvApi_QosClientStats i 20

File System API Guide iii

Contents

CvApi_QosClientStats v3 22
CvApi SetRtio. 24
File System Configuration and Location Management APIs. 29
CvApi_GetAffinity 29
CvApi_GetExtList. 30
CvApi_GetPhysLoc. 32
CvApi_GetSgInfo. 34
CvApi_GetSgName i 36
CvApi_SetAffinity 38
Access Management APIs 39
CvApi_ClearConcWrite 39
CvApi_ClearRdHoleFail 39
CvApi CuFstat. 40
CvApi_ CvOpenStat 41
CvApi_GetDiskinfo 42
CvApi GetQuota. i 44
CvApi GetVerInfo. i 46
CvApi LoadExtents i 47
CvApi_MoveRange 48
CvApi SetConcWrite.ot 51
CvApi SetQuota 51
CvApi_SetRdHoleFail 53
CvApi_StatFs. 53
CvApi StatPlus 54
CvApi SwapExtents. 56

|
Appendix A File System APl Example 59

iv File System APl Guide

HE B

. Chapter 1
™

I

Introduction

About This Guide

This guide contains information and instructions necessary to use the
StorNext File System APIs. This guide is intended for system
administrators, programmers, and anyone interested in learning about
using the StorNext File System APIs.

The StorNext File System API Guide is divided into the following
chapters:

e StorNext File System APIs

¢ File System APl Example

StorNext File System APIs which can be used to make calls from third-
party applications, resulting in enhanced operations between third-
party applications and StorNext.

Note: StorNext Storage Manager APIs are described in the StorNext
Storage Manager APl Guide.

File System API Guide

—_

Chapter 1: Introduction
Installing StorNext APIs

Installing StorNext APIs

The StorNext File System APIs are automatically installed when you
install the StorNext software.

Running APIs Remotely

StorNext File System APIs run locally on the client and the client's
mounted file systems. They interact with the remote MDC indirectly,
through the StorNext client.

Explanation of Warnings, Cautions and Notes

The following cautions, and notes appear throughout this document to
highlight important information.

Caution: Indicates a situation that may cause possible damage to
equipment, loss of data, or interference with other
equipment.

Note: Indicates important information that helps you make better
use of your system.

N

File System APl Guide

Chapter 1: Introduction
Quantum Service and Support

Quantum Service and Support

More information about this product is available on the Quantum
Service and Support website at www.quantum.com/ServiceandSupport.
The Quantum Service and Support website contains a collection of
information, including answers to frequently asked questions (FAQs).
You can also access software, firmware, and drivers through this site.

For further assistance, or if training is desired, contact the Quantum
Technical Assistance Center:

North America 1+800-284-5101 Option 5

EMEA 00800 999 3822

Online Service and www.quantum.com/OSR

Support

Worldwide Web www.quantum.com/ServiceandSupport

(Local numbers for specific countries are listed on the Quantum Service
and Support Website.)

File System API Guide

http://www.quantum.com/ServiceandSupport
www.quantum.com/OSR
http://www.quantum.com/ServiceandSupport

Chapter 1: Introduction
Quantum Service and Support

4 File System APl Guide

File System API Guide

Chapter 2

StorNext File System APIs

This chapter describes the Application Programming Interfaces (APIs)
that are available for StorNext File System. These file system APIs are
automatically installed with the StorNext software and do not need to
be installed separately.

The file system APIs are grouped into the following categories:

e Allocation and Space Management APIs

¢ Quality of Service and Real Time I/O APIs

¢ File System Configuration and Location Management APIs

e Access Management APIs

Appendix A at the end of this guide provides a test APl sample program
that illustrates how to use many of the StorNext File System APIs
described in this guide.

Most of these APIs take two parameters: a request structure and a reply
structure. On Windows, these correspond to the /inbuffer and outbuffer
parameters of DeviceloControl(). On UNIX, the two structures (request
and response) are consolidated into a single union so that we can still
use the ioctl() and fcntl() interface. The functionality remains the same.

For example, the UNIX definition of the call to allocate space would be:

typedef union allocspacereqreply {
AllocSpaceReq_t req;
AllocSpaceReply_t reply;

} AllocSpaceReqReply_t;

Chapter 2: StorNext File System APIs

Note: On Windows systems no helper library is distributed, and the
ioctls must be called directly.

Field names for request structures are prefaced with xq_ where <x> is
representative of the structure’s name. Field names for reply structures
are similarly prefaced with xr_.

All structures are 64-bit aligned and use the following typedefs on
Windows:

typedef UCHARuint8 t;
typedef USHORTuintl6_t;
typedef ULONGuint32_t;
typedef ULONGLONGuUint64 t;
typedef CHARint8_t;
typedef SHORTintl6_t;
typedef LONGint32_t;
typedef LONGLONGint64 t;

The control code definitions are platform dependent, and are defined in
a separate file for each platform. The version number is encoded in each
control code so that individual calls can be modified without affecting
the rest of the interface. The macro name (for example,
CvApi_PunchHole,) is the same on all platforms.

Platform Filename Interface Routine
Linux cv_linux_ioctl.h ioctl(2)

Solaris cv_sol_ioctl.h ioctl(2)

Irix cv_irix_ioctl.h fentl(2)

Windows cv_nt_ioctl.h DeviceloControl()

Except where noted, all calls return 0 (zero) on success, and a standard
platform-specific error code on error. On UNIX, it is a standard errno. On
Windows, it is one of the status codes listed in ddk\inc Windows Driver
Development Kit. Internally, StorNext maps all error codes to a platform-
independent value and only maps to platform error codes just before
returning to the user.

6 File System APl Guide

Chapter 2: StorNext File System APIs
Allocation and Space Management APIs

In this document the following error codes are defined:

VOP_ENOENT2
VOP_EACCESS5
VOP_EXIST7

VOP_EINVAL11
VOP_ENOSPC12
VOP_EFAULT19

These error codes are mapped to their closest platform-specific error. For
example, the error VOP_ENOENT maps to ENOENT on most UNIX
platforms, and the Windows error code
STATUS_OBJECT_NAME_NOT_FOUND on Windows (which may map
to a Win32 definition such as ERROR_NOT_FOUND).

All offsets and sizes are given in bytes and are rounded up, if necessary,
to the next file system block size.

For calls that return variable length buffers (such as extent lists), the call
will return the total number of items available, as well as the number
returned in this particular call. If more data is available than can be
returned in the user’s buffer, as much as possible is copied into the
buffer, and no error is returned. For subsequent calls, the user can
specify a different starting location (ordinal for stripe groups, starting
offset for extents). This is similar to the getdents/getdirentries semantic
on UNIX. Note that if the list is changing while the user is attempting to
retrieve it, inconsistent results may be returned. When there are no
more entries available, ENOENT is returned.

In this document, the word hand/e is synonymous with a file descriptor
in UNIX.

Note: StorNext file system APl names are preceded with “CvApi”
because they were inherited from CVFS.

Allocation and Space Management APIs

These APIs allow you to control how data is written to StorNext,
resulting in faster writes and more efficient allocation of capacity.

File System API Guide 7

Chapter 2: StorNext File System APIs
Allocation and Space Management APIs

CvApi_AllocSpace

This API allocates extent space in a file. (This APl is scheduled for
deprecation and will not be supported in future StorNext releases.)

Handle

Target file.

Notes

This call attempts to allocate disk space of the requested size, starting at
the requested file-relative offset. Commonly, this results in a single
extent being allocated. However, if the file system free space is
fragmented, up to 24 extents may be allocated. In addition, if the entire
requested space cannot be allocated by adding 24 new extents, the API
performs only a partial allocation and still returns a successful status.
Therefore, to reliably determine the actual amount of space allocated by
CvApi_AllocSpace, applications must track the number of file blocks
using the UNIX fstat(2) system call or through the CvApi_CvFstat API.

If the caller specifies an offset to begin allocation, the call allocates
space at the offset, rounded up to a file system block size. If any
allocation exists that maps even a portion of <offset + size>, the call
returns EXISTS. If no offset is specified, the call allocates the requested
size beginning at the next file system block boundary beyond the
current end of file. The number of bytes is rounded up to a file system
block size. In both cases, the file size is updated if the allocation causes
an increase in the current end of file.

If the affinity is specified, this sets the affinity for this and all future
allocations. In this way, setting the affinity is “sticky.” If the affinity is
already set in the file, setting the affinity in this call has no affect. To get/
set the affinity, see the CvApi_GetAffinity / CvApi_SetAffinity calls. The
allocation will be made exclusively only from stripe groups that have the
matching affinity.

The caller can also specify that the extent information be loaded into the
client extent mapping tables. This eliminates a subsequent trip to the
FSM to retrieve extent information for the range mapped by this call.

All byte sizes and offsets are rounded up to the nearest file system block
size. The call returns the actual allocated size and offset.

CvApi_AllocSpace has been deprecated and will be removed in a
future release. Use the CvApi_VerifyAlloc function instead.

File System APl Guide

File System APl Guide

Chapter 2: StorNext File System APIs
Allocation and Space Management APIs

Structure

typedef struct _AllocSpaceReq {
uint64_taq_size;
uint64_taq_offset;
uint64_taq_affinitykey;

uint32_taq_flags;
#tdefine ALLOC_OFFSETzx01
#tdefine ALLOC_LOAD_EXTOx02
#tdefine ALLOC_STRIPE_ALIGNOx04
#tdefine ALLOC_AFFINITYOx08
#tdefine ALLOC_KEEPSIZEOx10
#define ALLOC_PERFECTFITOx20
#tdefine ALLOC_SETSIZEOx40

uint32_taq_padl;
} AllocSpaceReq_t;

typedef struct _AllocSpaceReply {
uint64_tar_size;
uint64_tar_offset;

} AllocSpaceReply_t;

UNIX ioctl structure:

typedef union _allocspacereqreply {
AllocSpaceReq_treq;
AllocSpaceReply treply

} AllocSpaceReqReply_t;

reQuest Fields

ag_size Size in bytes to allocate. Must not be zero. If not a multiple of
the file system block size, it is rounded up to the
nearest file system block size.

ag_offset If ALLOC_OFFSET is set, the aq_size bytes (rounded up to
the nearest file system block size) is allocated
starting at file byte offset aq_offset (rounded
up to the nearest file system block size).

Chapter 2: StorNext File System APIs
Allocation and Space Management APIs

10

If ALLOC_OFFSET is clear, the offset is ignored when
allocating space. The space is allocated at the
end of the file.

aq_affinitykey 64 bit affinity “key” identifying the affinity for the
allocation. Valid only if ALLOC_AFFINITY is set.
This forces the space to be allocated exclusively
from stripe groups with a matching affinity key.

ag_flags Control Flags:
ALLOC_OFFSETaq_offset is valid.

ALLOC_LOAD_EXTLoad the extent struct mapping on the client and
add it to the client file system. Note: in case
where multiple extents are allocated, only the
first extent is loaded.

ALLOC_STRIPE_ALIGNAllocate space starting at a stripe boundary.

ALLOC_AFFINITYaq_affinitykey is valid.

ALLOC_KEEPSIZEDo not update the size of the file, even if extending
it.

ALLOC_ PERFECTFITFollow the ‘perfect fit' rules for allocation.

ALLOC_SETSIZEUpdate the file size, and broadcast the size change to
other clients. The default is to only broadcast
the new number of blocks and the fact the
extent list has changed (which causes clients to
flush their extent lists).

Reply Fields

ar_size Actual size of the allocation that was attempted.

ar_offset File relative offset of allocated space.

Error Returns

VOP_ENOSPCInsufficient space in the file system to satisfy the request.
VOP_EINVALInvalid affinity key.

VOP_EXISTSAnN allocation already exists that maps some or all of the
specified offset and length.

File System APl Guide

CvApi_GetPerfectFitStatus

CvApi_PunchHole

File System APl Guide

Chapter 2: StorNext File System APIs
Allocation and Space Management APIs

This APl determines whether a file has been marked for PerfectFit
allocations.

Handle

Handle for the file being queried.

Notes

This APl is used by the snfsdefrag application to ensure that files with
PerfectFit allocations continue to have PerfectFit allocations after the
files are defragmented.

Structure

typedef struct _GetPerfectFitStatusReply {
uint32_t pr_status;
uint32_t pr_padil;

} GetPerfectFitStatusReply t;

UNIX ioctl structure:
None. Use GetPerfectFitStatusReply_t directly.

Reply Fields:

pr_statuslf 1, the file has the PerfectFit bit set. If 0, the file does not.

Error Returns

VOP_ENOENTThe file doesn't exist.
VOP_EINVALThe file is not a “regular” file.

Other Communications failure with the FSM.

This API punches a hole in the file.

11

Chapter 2: StorNext File System APIs
Allocation and Space Management APIs

12

Handle

Target file.

Notes

This call punches a hole in the file, adjusting the allocation map of the
file to indicate that no data blocks are allocated for the indicated range.
The granularity of access is the file system block size. The byte offsets
are rounded down to the beginning of the block containing the
specified byte offset. The actual offsets used are returned; the starting
offset will always be file system block aligned.

If zero is specified as the ending offset, a hole is punched to the end of
the file.

Structure

typedef struct _PunchHoleReq {
uint64_tpq_start;
uint64_tpq_end; /* Inclusive */
} PunchHoleReq_t;

typedef struct _PunchHoleReply {
uinte4_tpr_start;
uint64_tpr_end;
uint64_tpr_nblocks;
uint64_tpr_blksfreed;

} PunchHoleReply t;

UNIX ioctl structure:

typedef union _punchholereqrep {
PunchHoleReq_treq;
PunchHoleReply_treply;

} PunchHoleReqReply_t;

reQuest fields

pq_startStarting byte offset of hole.

pg_end Inclusive ending byte offset. A value of zero means punch to
EOF.

File System APl Guide

CvApi_SetFileSize

File System APl Guide

Chapter 2: StorNext File System APIs
Allocation and Space Management APIs

Reply Fields

pr_start Starting byte offset where hole was created.
pr_end Inclusive ending byte offset where hole was created.
pr_nblocksNumber of blocks currently allocated to the file.

pr_blksfreedNumber of blocks freed.

This API sets the size of a file without zeroing pre-allocated data.

Handle

Target file.

Notes

The effect of this call is very similar to making the ftruncate(2) system
call, except that when the file size is being extended, any existing blocks
between the old EOF and the new EOF are not zeroed regardless of
whether the SNFS “sparse” mount option is enabled or not.
CvApi_SetFileSize is not currently supported on the Apple Xsan clients.

Structure
typedef struct _setfilesizereq {

uint64_t sq_size;
} SetFileSizeReq_t;

No reply structure

UNIX ioctl structure.

None. Use SetFileSizeReq_t directly.

reQuest Fields

sq_size New file size.

13

Chapter 2: StorNext File System APIs
Allocation and Space Management APIs

Error Returns

VOP_EFAULTBad buffer offset.
VOP_EPERMFile is not writable by the caller.

VOP_EPERMThe user is not superuser and the “protect alloc” mount
option is enabled.

Other Communications failure with the FSM.

CvAPI_VerifyAlloc This API allocates blocks within a file at the given offset.

Handle

The target file.

Notes

This call allocates all extents needed to fill the given range within a file.
If any portion of the given range is already allocated, that portion is
skipped. All additional space needed to form a completely allocated
range is then filled in and a successful return status is set. If the given
range is completely allocated, no allocations will be done and a
successful status will be returned.

In order to ensure that only the requested allocation and no more is
provided, use the ALLOC_NOMORETHAN flag. If this flag is not used
the allocation might be rounded to optimize allocations.

In the case of an allocation failure, no space will be allocated and an
error will be returned.

CvAPI_VerifyAlloc does not modify the file's size.

Structure

typedef struct _VerifyAllocReq {
uint64_tvq_size;

uinte4_tvq_offset;

uint32_tvq_flags;

14 File System APl Guide

Chapter 2: StorNext File System APIs
Quality of Service and Real Time 1/0O APIs

#define ALLOC_STRIPE_ALIGNOx04
#define ALLOC_NOMORETHANOx20

uint32_tvq_padil;

} VerifyAllocReq_t;

No reply structure

Unix ioctl structure:

None. Use VerifyAllocReq_t directly.

reQuest Fields

vq_size Size, in bytes, of the allocation request.
vq_offsetOffset, in bytes, of the start of the allocation range.

vqg_flagsFlags to affect allocation behavior.

Error Returns

VOP_ENOSPC Not enough free space from which to allocate.

Note: This error is returned for files on both managed and
unmanaged file systems and does not trigger emergency
truncation on the StorNext Storage Manager.

VOP_EINVALInvalid arguments.

Other Communications failure with the FSM.

Quality of Service and Real Time I/O APIs

This section describes the file system APIs that pertain to quality of
service and real time 10.

File System APl Guide 15

Chapter 2: StorNext File System APIs
Quiality of Service and Real Time 1/0O APIs

CvApi_DisableRtio

CvApi_EnableRtio

16

This API disables (clears) the file's real-time attribute, making all further
I/Os gated (if the stripe group is still in real-time mode).
Handle

Target file.

Notes

Files are also ungated by closing.

Structure

None.

This API puts a file handle into real time (ungated) mode.

Handle

Target file.

Notes

Ungated file handles are allowed full, unfettered (ungated) access to the
SAN. Handles remain ungated until explicitly disabled or closed.

It is important to note that gating occurs on a handle basis, not a file
basis. It is therefore possible for multiple threads with multiple handles
to be sharing a file, and for some of them to receive ungated (real time)
access, while the remainder is gated.

It is not necessary to explicitly enable RTIO on a handle via this call if the
handle refers to a regular file and the handle was specified in the call to
CvApi_SetRitio.

File System APl Guide

CvApi_GetRtio

File System APl Guide

Chapter 2: StorNext File System APIs
Quality of Service and Real Time 1/O APIs

Structure

Optional: If the RtReq_t structure is provided as an argument, the
rq_flags field is queried to determine if extents should be pre-loaded.
See CvApi_SetRtio for more information.

Reply Fields
pr_extentExtent information for the target offset.

pr_breadthStripe breadth. This is the amount of data written on each
disk.

pr_depthStripe depth. This is the number of disks in a stripe.

pr_voloffsetAmount to skip in basic blocks from start of volume (size of
disk label info).

pr_blkoffsetDevice block offset from beginning of disk.

pr_edevUnit object pointer. Fairly useless outside of the kernel.

This API retrieves the real time parameters for a stripe group.

Handle

Any file in the file system.

Notes

This API returns the real time parameters for a stripe group. The
parameters are in I/Os/sec.

Structure

This uses the RtReq_t structure with the RT_GET flag to request the
real-time parameters for a stripe group.
typedef struct _rtqueryreply {

uint32_t rrq_sgid;

uint32_t rrq_pad;

int32_t rrq_limit;

17

Chapter 2: StorNext File System APIs
Quiality of Service and Real Time 1/0O APIs

CvApi_GetRtio_V3

18

int32_t rrq_cur;

int32_t rrg_nrtio_hint;
uint32_t rrqg_nrtio_clients;
} RtQueryReply t;
UNIX ioctl structure

typedef union rtqueryreqrep {
RtReq_t req;
RtQueryReply t reply;
} RtQueryReqReply_t;

reQuest Fields

See SETRTIO

Reply Fields

rrq_sgidStripe group number.

rrq_limitConfigured real time 1/O limit, in I/Os/sec.

rrq_cur Current amount of real time I/0O committed to clients.

rrq_nrtio_hintAmount of non-real time I/O a client is most likely to obtain
when requesting a non-real time /O token.

rrq_nrtio_clientsNumber of clients with outstanding non-real time I/O
tokens.

This API retrieves the real time (rtio) and non-real time reservation (rvio)
parameters for a stripe group.

Handle

Any file in the file system.
Notes

This API returns the real time and non-real time reservation (rvio)
parameters for a stripe group. The parameters are in I/Os/sec. This APl is

File System APl Guide

File System APl Guide

Chapter 2: StorNext File System APIs
Quality of Service and Real Time 1/O APIs

intended to replace CvApi_GetRtio for StorNext releases since 3.5.0
which support the rvio feature.

Structure

This uses the RtReq_t structure with the RT_GET flag to request the
real time parameters for a stripe group. rq_sgid in RtReq_t is set to the
stripe group ordinal number.

typedef struct _rtqueryreply v3 {
uint32_t rrq_sgid;
uint32_t rrq_state;
#define RT_STATE_NONREALTIME ©x01

#tdefine RT_STATE_REALTIME 0x02
#define RT_STATE_REQUEST ox04
#tdefine RT_STATE_TIMEOUT 0x10
#define RT_STATE_ALL_UNGATED ©x20

int32_t rrq_limit;

int32_t rrq_rtiocur;

int32_t rrq_rviocur;

int32_t rrq_rvioreq;

int32_t rrq_nrtio_hint;

uint32_t rrq_nrtio_clients;

uint32_t rrq_rvio_clients;

} RtQueryReply v3_t;

UNIX ioctl structure

typedef union rtqueryreqrep {
RtReq_t req;

RtQueryReply t reply;
RtQueryReply t reply_v3;

} RtQueryReqReply_t;
reQuest Fields

See SETRTIO

Reply Fields
rrq_sgid Stripe group ordinal number.

rrq_state The state of real time state machine.

19

Chapter 2: StorNext File System APIs
Quiality of Service and Real Time 1/0O APIs

CvApi_QosClientStats

20

rrq_limit Configured real time I/O limit, in 1/Os/sec.
rrg_rtiocur Current amount of real time 1/0s committed to clients.

rrq_rviocur Current amount of non-real time reservation 1/Os (rvio)
committed to clients.

rrq_rvioreq Current amount of non-real time reservation I/Os (rvio)
requested from clients.

rrq_nrtio_hint Amount of non-real time I/O a client is most likely to
obtain when requesting a non-real time 1/O token.

rrq_nrtio_clientsNumber of clients with outstanding non-real time
I/O tokens.

rrq_rvio_clientsNumber of clients that have requested non-real time
reservation |Os.

This API gets the QOS statistics for all connected clients.

Handle

Target file.

Notes

This call obtains the amount of real time and non-real time currently
allocated for each client in the SAN.

The number of client connections the FSM can support is fixed by the
configuration file. To retrieve the number of client connections available,
the caller should first specify zero as the maximum number of clients.
This returns the size of the connection table on the FSM. The caller can
then allocate an array large enough to hold the QOS information for all
clients, and pass the array in a second call.

Structure

Following is the structure that returns information about each
connected client. For QOS purposes, only clients that have the
QSTAT_CLIENT flag set will have any valid QOS information. The

File System APl Guide

Chapter 2: StorNext File System APIs
Quality of Service and Real Time 1/O APIs

QSTAT_VALID flag means the entry in the connection table is valid, and
the QSTAT_ADM flag means the connection is an “administrative tap.”
typedef struct rtclientstat {
uint32_t c_ipaddr;
uint32_t c_rtios;
uint32_t c_nonrtios;
uint32_t c_flags;
#define QSTAT_VALIDOx1/* entry valid */
#define QSTAT_ADMOx2 /* adm connection */
#define QSTAT_CLIENTOx4/* client connection */
} RtClientStat_t;

typedef struct _rtclientstatreq {

uint32_t cg_nclients;

uint32_t cq_sg;

CvUserAddr_t cq_buf; /* RtClientStat_t */
} RtClientStatReq_t;

typedef struct _rtclientstatreply {
uint32_tcr_maxclients;/* max entries on fsm */
uint32_tcr_pad;

} RtClientStatReply_t;

typedef union rtclientstatreqrep {
RtClientStatReq_t req;
RtClientStatReply_t reply;
} RtClientStatReqReply_t;

reQuest Fields

cqg_nclientsNumber of RtClientStat_t entries in the .cq_buf field. If this
field is zero, then the call will return the max number of
clients in the FSM connection table. This information can
be used on subsequent calls to size the request buffer.
cg_sg Stripe group to query.

cq_buf Address of RtClientStat t buffer where information will be
deposited.

File System APl Guide 21

Chapter 2: StorNext File System APIs
Quiality of Service and Real Time 1/0O APIs

CvApi_QosClientStats_v3

22

Reply Fields

cr_maxclientsMaximum number of entries in the FSM connection table.
Callers can use this information to size their buffer to
the largest possible size.

Error Returns

VOP_EFAULTBad buffer offset.

Other Communications failure with the FSM.

This API gets the QOS statistics, including rtio, rvio and non-rtio, for all
connected clients.

Handle

Target file.

Notes

This call obtains the real time and non-real time parameters for each
client in the SAN.

This APl is intended to replace APl CvApi_QosClientStats for StorNext
releases since 3.5.0 which support the rvio feature.

The maximum number of client connections the FSM can support is
fixed by the configuration file. To retrieve the number of client
connections available, the caller should first specify zero as the
maximum number of clients. This returns the size of the connection
table on the FSM. The caller can then allocate an array large enough to
hold the QOS information for all clients, and pass the array in a second
call.

Structure

Following is the structure that returns information about each
connected client. For QOS purposes, only clients that have the
QSTAT_CLIENT flag set will have any valid QOS information. The

File System APl Guide

Chapter 2: StorNext File System APIs
Quality of Service and Real Time 1/O APIs

QSTAT_VALID flag means the entry in the connection table is valid, and
the QSTAT_ADM flag means the connection is an "administrative tap."
typedef struct rtclientstat_v3 {

uint32_t c_ipaddr;

uint32_t c_rtios;

uint32_t c_nonrtios;

uint32_t c_rvios_req;

uint32_t c_flags;
} RtClientStat_v3_t;

typedef struct _rtclientstatreq {

uint32_t cq_nclients;

uint32_t cq_sg;

CvUserAddr_t cq_buf; /* RtClientStat_t */
} RtClientStatReq_t;

typedef struct _rtclientstatreply {
uint32_t cr_maxclients; /* max entries on fsm */
uint32_t cr_pad;

} RtClientStatReply_t;

UNIX ioctl structure

typedef union rtclientstatreqrep {
RtClientStatReq_t req;
RtClientStatReply_t reply;

} RtClientStatReqReply_t;

reQuest Fields

cqg_nclients Number of RtClientStat_t entries in the .cq_buf field. If this
field is zero, the call will return the maximum number of
clients in the FSM connection table. This information can
be used on subsequent calls to size the request buffer.
cg_sg Stripe group to query.

cq_buf Address of RtClientStat v3_t buffer where information will be
deposited.

File System APl Guide 23

Chapter 2: StorNext File System APIs
Quiality of Service and Real Time 1/0O APIs

CvApi_SetRtio

24

Reply Fields

cr_maxclients Maximum number of entries in the FSM connection table.
Callers can use this information to size their buffer to
the largest possible size.

Error Returns

VOP_EFAULT Bad buffer offset.

Other Communications failure with the FSM.

This API requests real time 10 on an individual stripe group or file. See
also the Platform Dependencies section for this API.

Handle

Root directory. Affects all files on stripe group.
or

Handle to target file. Affects only specific target handle/file descriptor.

Notes

This call enables real time and non-real time parameters on a stripe
group basis. RTIO is on an individual stripe group, not file system basis,
since stripe groups can have very different access characteristics and can
be used for very different file types (for example, audio versus video).

The caller specifies the maximum number of 10s per second or MB/sec.
that they expect to utilize on the stripe group. Either one, but not both,
may be specified. The number of I0s per second can be converted into
MB/sec. by dividing the MB/sec. rate by the block size, stripe width, and
stripe depth.

For example:Given an 8 disk stripe group with a StripeBreadth of 16 and
an FsBlockSize of 4k, a requested rate of 50 MB/sec. would be (50mb/
sec. * 1024k) / (8 * 16 *4k) = 100/sec.

The FSM may grant some amount less than requested unless the
RT_MUST flag is set.

File System APl Guide

File System APl Guide

Chapter 2: StorNext File System APIs
Quality of Service and Real Time 1/O APIs

Once the FSM has returned a non-zero value in the reply structure, the

partition group is in real-time mode. If the caller chooses to not accept
the values returned by the FSM, it is the caller’'s responsibility to disable
RTIO on the stripe group.

If the handle/file descriptor is the handle to the root of the file system
("V"),the call affects all files on the designated stripe group. Closing the
root handle will not disable RTIO on the stripe group. It must be
implicitly cleared by specifying zero in either the rg_rtios or the rq_rtmb
fields and setting the RT_CLEAR flag.

Setting the RT_CLEAR flag with a non-zero value in either rq_rtios or
rg_rtmb only releases the amount specified; specifying zero in those
fields completely disables real time 10 on the stripe group.

If the handle/file descriptor is for a regular file in the stripe group, the
call has slightly different semantics. Using a target handle is equivalent
to specifying RTIO on the root directory, followed by a call to put the
handle into real time mode (CvApi_EnableRtio). All other non-real time
IO handles on the stripe group will be gated, as when specifying RTIO
on the root directory. RTIO will be disabled when the handle is closed,
either explicitly or implicitly, and the bandwidth returned to the system.

Note: If a file is opened with multiple handles, each specifying a
different amount of real time 10O, the RTIO be released only
when the last handle has been closed. No RTIO will be released
until the last handle has been closed.

The mode of specifying a target file allows non-cooperating applications
to request differing amounts of real time 10 on the same stripe group.
Upon successful return from the call, the target handle is in real time
(ungated) mode; no further calls need be made. All accesses to other
non-real time handles will be gated. The additional semantic difference
is that RTIO is returned to the system when the handle is closed.

If the handle/file descriptor is for a regular file and the RT_NOLOAD
flag is not set, all extents for the file are preloaded into the file system.
This cuts down on cold-start overhead. However, if the file has many
extents, this operation can take a long time to complete.

For both modes, if the FSM is rebooted or is reset, the client file system
will attempt to re-negotiate the real time 10 requirements with the FSM.
This may introduce a period of instability. It may not be possible to
guarantee the same bandwidth requests as before, due to request
ordering during the recovery period. If the same amount of real-time

25

Chapter 2: StorNext File System APIs
Quiality of Service and Real Time 1/0O APIs

26

bandwidth cannot be obtained during recovery processing, the next
access to a handle that is real time mode will fail and an event will be
logged in the system log.

If the handle/file descriptor is for the root of the file system and the
RT_ABSOLUTE flag is set, the system adjusts the amount of currently
allocated RTIO to bring it in line with the request. This is useful for
systems that are continually adjusting the amount of RTIO available
based on external criteria (such as a video stream bit rate).

Note: The following extent crossing functionality will be implemented
in a future release.

File-based RTIO encompasses the entire file. Since the file can have
multiple extents, it is possible that it will cross stripe groups. If the
RT_SEQ bit is set in rq_flags field, the client FSD assumes that access
will be sequential through the file. The client FSD ensures that when
crossing from one stripe group to the next, the new stripe group is put
into the appropriate real time mode before any access occurs. The real
time requirements of the previous stripe group will be released.

Structure

typedef struct _rtreq {

union {
int32_tru_rtios; /* ios per sec */
int32_tru_rtmb; /* mb per sec */
} rq_un;

#tdefine rq_rtiosrq_un.ru_rtios
#tdefine rq_rtmbrqg_un.ru_rtmb

uint32_t rq_flags;
#tdefine RT_IO0Ox01 /* r_rtios valid */
#tdefine RT_MBOx02 /* r_rtmb valid */
#tdefine RT_CLEAROXx@4 /* clear RT */
#tdefine RT_SETOx08 /* set RT */
#tdefine RT_MUSTOx1@ /* fail if can't satisfy */
#tdefine RT_SEQOx20 /* sequential I0 */
#tdefine RT_GETOx40 /* get rt params */
#tdefine RT_NOGATEOx80 /* ungated IO */
#tdefine RT_NOLOADOx100/* don't load extents */

File System APl Guide

File System APl Guide

Chapter 2: StorNext File System APIs
Quality of Service and Real Time 1/O APIs

#tdefine RT_ABSOLUTE 0x200 /* absolute req not incr
*/
uint32_t rq_sgid; /* stripe group ID */
} RtReq_t;

typedef struct _rtreply {

union {
int32_tru_rtios; /* ios per sec */
int32_tru_rtmb; /* mb per sec */
} rr_un;

#tdefine rr_rtiorr_un.ru_rtios
#tdefine rr_rtmbrr_un.ru_rtmb

uint32_t rr_flags;

#define RT_IOOx01 /* r_rtios valid */
#define RT_MBOx02 /* r_rtmb valid */
uint32_t rr_padl;

} RtReply;

UNIX ioctl structure

typedef union rtreqgrep {
RtReq_treq;
RtReply treply;

} RtReqReply_t;

reQuest Fields

rg_rtios Requested real time I/Os per sec. Valid only if RT_IO is set.
RT_MB may not also be set.

rg_rtmb Requested megabytes per sec. Valid only if RT_MB is set.
RT_IO may not also be set.

rq_flagsControl flags
RT_IO rr_rtios is valid.
RT_MB rr_rtmb is valid.

RT_CLEARCIear real time from stripegroup. Either RT_CLEAR or
RT_SET must be set.

27

Chapter 2: StorNext File System APIs
Quiality of Service and Real Time 1/0O APIs

28

RT_SETSet real time parameters for stripegroup.

RT_MUSTFail the request if the requested amount can't be satisfied.
This prevents the FSM from returning a lesser value
than what was requested.

RT_SEQThe application will be performing sequential I/O and the client
FSD should handle crossing of stripe groups. (This
functionality will be implemented in a future
release.)

RT_NOGATEIf RT_SET is specified put the handle into ungated mode.
In this mode, the I/O using this handle consumes no
RTIO and is not gated. If RT_CLEAR is specified, the
handle is removed from this mode.

RT_NOLOADDo not pre-load extents for the file.

RT_ABSOLUTEThe amount specified in the rq_rtios field is an absolute
value for the stripe group specified in rq_sgid. The
system adjusts the request depending on the
current state of the stripe group and the current
amount of RTIO already allocated. This flag is only
valid when used on the root directory (that is, not
on a regular file).

rq_sgid Stripe group ordinal, identifying stripe group. See the API for
retrieving the stripe group name to match names
with ordinals.

Reply Fields

rr_rtios Allowed real time 1/Os per second. Valid only if RT_|O is set.
May be less than or greater than the amount requested if
RT_MUST flag is clear.

rr_rtmb Allowed real time MB per second. Valid only if RT_MB is set.
May be less than or greater than the amount requested if
RT_MUST flag is clear.

Platform Dependencies

If the same file is shared in real time and non-real time mode on a Unix
platform (that is, anything other than NT4, Win2k, or XP), the caller
must use the fcntl(2) system call to differentiate between the real time
and non-real time accesses. This is because UNIX platforms do not

File System APl Guide

Chapter 2: StorNext File System APIs
File System Configuration and Location Management APIs

typically export file descriptor flags down to the file system. The value to
use is different, depending on the platform. On Irix and Solaris, the
caller must do a fentl (fd, F_SETFL, O_SYNC) to identify the real time
file descriptor.

Note: The file system cannot distinguish between the use of O_SYNC
for identifying real time file descriptors and its use for
specifying synchronous writes. Therefore, on Irix and Solaris
platforms, when a file is opened O_SYNC (or if the O_SYNC is
set on the file via fcntl), all writes will be synchronous and all I/
O performed on the file will be non-gated.

On Linux, the caller must do a fentl (fd, F_SETFL, O_NONBLOCK). All
other file descriptors will be gated.

File System Configuration and Location Management

APIs

CvApi_GetAffinity

File System APl Guide

These APIs are used primarily for reporting purposes and provide details
on file parameters as well as configuration of the underlying disk
volumes that make up a StorNext file system.

This API gets the affinity for a file.

Handle

Target file.

Notes

Affinities can direct allocations to specific stripe groups. This call will
return the current affinity for the file.

29

Chapter 2: StorNext File System APIs
File System Configuration and Location Management APIs

CvApi_GetExtList

30

Structure

No request structure

typedef struct getaffinityreply {
uint64_tar_affinity;

} GetAffinityReply t;

UNIX ioctl structure.

None. Use GetAffinityReply_t directly.

Reply Fields

ar_affinityCurrent affinity identifier for file.

This API gets the list of extents for a file.

Handle

Target file.

Notes

This call does not load the extents in the client file system extent map
for a file. It returns as many extents as it can in a single call directly from
the FSM.

This is an iterative call. It is the responsibility of the caller to allocate any
free buffers. Since there may be many extents for a file, the caller can
iterate over the list, specifying a different starting offset in
gq_startfrbase. When there are no more extents available the call
returns the platform equivalent of ENOENT.

The caller must allocate the buffer for the reply data, and initialize the
gq_buf field to point to it. The buffer should be aligned on a minimum
of an 8 byte boundary.

Structure

typedef sruct _cvexternalextent {
uint64_tex_frbase; /* file relative offset */

File System APl Guide

File System APl Guide

Chapter 2: StorNext File System APIs
File System Configuration and Location Management APIs

uint64_tex_base; /* fs starting offset */
uint64_tex_end; /* fs ending offset, inclusive*/
uint32_tex_sg; /* stripe group number */
uint32_tex_depth; /* sg depth for this extent */

uint32_tex_padil;
} CvExternalExtent_t;

typedef struct _getextlistreq {
uint64_t gq_startfrbase;
uint32_t gq_numbufs;
uint32_t gq_padil;
void *qb_buf;
} GetExtListReq_t;

typedef struct _getextlistreply {
uint32_t gr_numreturned;
uint32_t gr_pad;

} GetExtListReply t;

UNIX ioctl structure

typedef union _getextlistreqrep {
GetExtListReq_treq;
GetExtListReply treply;

} GetExtListReqReply t;

Fields, CvExternalExtent_t

ex_frbaseFile relative starting byte offset. This offset can be anywhere in
the extent; it does not have to correspond exactly to the
starting offset of an extent. Any extent that contains
ex_frbase will be returned.

ex_baseFile system starting byte offset.

ex_end File system ending byte, inclusive. Since this byte offset is
inclusive and specifies the last valid byte in the extent, this
value will not be a multiple of the file system block size. To
obtain the next extent, add one to e_end for the starting
offset of the next extent.

ex_sg ID of stripe group.

31

Chapter 2: StorNext File System APIs
File System Configuration and Location Management APIs

CvApi_GetPhysLoc

32

ex_depthDepth of stripe group for this extent. Stripe groups can grow
and shrink dynamically, so the depth of the extent may not
match the current depth of the stripe group.

reQuest Fields

gq_startfrbaseStarting file relative byte offset.
gg_numbufsNumber of CvExtent_t sized buffers in response.

gq_buf User allocated buffer where the call will place an array of
CvExternalExtent_t structs.
Reply Fields

gr_numreturnedNumber of CvExternalExtent_t elements in ggq_buf.

Error Returns

VOP_ENOENTNo more entries available.
VOP_EFAULTBuffer is invalid.

VOP_EINVALInvalid starting offset. The extent list has probably
changed.

This API determines the physical location of any byte offset in a file.

Handle

Target file.

Notes

This call returns extent information about the target offset, as well as
the location in the file system and on the target disk.

All offsets are rounded up to the nearest file system block size. All values
are specified in bytes.

File System APl Guide

File System APl Guide

Chapter 2: StorNext File System APIs
File System Configuration and Location Management APIs

Structure

typedef struct _physlocreq {
uint64_tpqg_offset;
} PhysLocReq_t;

typedef struct _physlocreply {
CvExtentpr_extent;

uint64_tpr_breadth;
uint64_tpr_depth;

uint64_tpr_voloffset;/* VolHder sz in bytes */
uint64_tpr_blkoffset;/* Block offset in bytes */

uint32_tpr_edev;
uint32_tpr_padl;

} PhysLocReply t;
Unix ioctl structure

typedef union _phylocreqreply {
PhysLocReq_treq;
PhysLocReply treply;

} PhysLocReqReply_t;

reQuest Fields

pq_offsetDesired byte offset.

Reply Fields
pr_extentExtent information for the target offset.

pr_breadthStripe breadth. This is the amount of data written on each
disk.

pr_depthStripe depth. This is the number of disks in a stripe.

pr_voloffsetAmount to skip in basic blocks from start of volume (size of
disk label info).

pr_blkoffsetDevice block offset from beginning of disk.

33

Chapter 2: StorNext File System APIs
File System Configuration and Location Management APIs

CvApi_GetSginfo

34

pr_edevUnit object pointer. Fairly useless outside of the kernel.

This API gets the parameters associated with a stripe group.

Handle

Any, but usually handle to root directory.

Notes

This call retrieves all the kernel states associated with the specified stripe
group, including the affinity identifiers.

This call is local to the client and only queries the information on
partition groups that are valid on the client. If a stripe group is not
being accessed by the client and is therefore not currently active on the
client, then the call cannot return information about the stripe group. It
will return ENOENT.

Structure

#define SG_NAMELEN 256

typedef struct _sginforeq {
uint32_t sqi_id;
uint32_t sqi_pade;
CvUserAddr_t sqi_keys;
CvUserAddr_t sqi_keycnt;
} SgInfoReq_t;

typedef struct _sginforeply {
uint64_t sri_totblks;
uint64_t sri_freeblks;

uint32_t sri_breadth;
uint32_t sri_depth;

uint32_t sri_flags;
#tdefine SG_PART_VALID ox1
#tdefine SG_PART_ONLINE ©x2
#tdefine SG_PART_METADATA 0x4

File System APl Guide

File System APl Guide

Chapter 2: StorNext File System APIs
File System Configuration and Location Management APIs

#tdefine SG_PART_JOURNAL ©x8
#tdefine SG_PART_EXCLUSIVE ©x10
uint32_t sri_bsize;

char sri_name[SG_NAMELEN];
} SgInfoReply_t;

UNIX ioctl structure:

typedef union _sginfoqrep {
SgInfoReq_t req;
SgInfoReply_t reply;
} SgInfoReqReply t;

reQuest Fields

sqi_id ID of stripe group to search for.

sqi_keysA user supplied uint64_t array to be filled with affinity
identifiers. If sqi_keys is NULL, no identifiers will be
returned.

sqgi_keycntPointer to a uint32_t. On input, this integer should be the
maximum number of affinity identifiers to be returned
(i.e. the size of the array sqi_keys). On output, the integer
will contain the number of indentifiers actually returned.
If sqi_keycnt is NULL, no keys will be returned.

Reply Fields
sri_totblksTotal blocks on stripe group.

sri_freeblksFree blocks available on stripe group.

sri_breadthStripe breadth in file system blocks (number of blocks
written to each disk in a single chunk).

sri_depthStripe breadth (number of disks in stripe group).
sri_flagsState flags

SG_PART_ONLINEStripe group is valid and online.
SG_PART_VALIDStripe group is valid; may be offline.
SG_PART_METADATAStripe group is used for metadata.

35

Chapter 2: StorNext File System APIs
File System Configuration and Location Management APIs

CvApi_GetSgName

36

SG_PART_JOURNALStripe group is used for journal.
SG_PART_EXCLUSIVEStripe group is exclusive.
SG_PART_WRITABLEStripe group is writable.

sri_bsizeBlock size for stripe group.

sri_name Name of stripe group.

Error Returns

VOP_ENOENTNo more entries available.
VOP_EFAULTBuffer is invalid.

VOP_E2BIGStripe group has more affinity IDs than the user-supplied
sqi_keycnt.

This API gets the ASCII name for a stripe group or the ordinal for a
specified ASCIl name.

Handle

Any, but usually handle to root directory.

Notes

Many of the requests use an ordinal to identify a stripe group. This API
converts an ordinal into its user-visible name. In this manner, a user can
iterate through the stripe groups and match up the names in the FSM
configuration file with the current ordinal. The names returned will
match the [StripeGroup xxx] directive in the FSM config file. The call
returns the name of the stripe group matching the ordinal specified in
the sqg_id field, or the ordinal of the stripe group with the matching
name in sq_name.

This call is local to the client, and only queries the information on
partition groups that are valid on the client. If a stripe group is not
being accessed by the client and is therefore not currently active on the
client, the call cannot return information about the stripe group. It will
return ENOENT.

File System APl Guide

File System APl Guide

Chapter 2: StorNext File System APIs
File System Configuration and Location Management APIs

Each stripe group name is 256 bytes long, including NULL. This is the
minimum buffer size. Buffers that are shorter than the minimum will
result in an exception, returning EFAULT.

When there are no more entries available, the call returns ENOENT. If no
stripe group corresponds to the specified ordinal, it means that the list
changed between calls, and the call returns EINVAL.

Structure

#tdefine SG_NAMELEN256
typedef struct _sgnamereq {

uint32_tsq_flags;
#define SG_GETNAME1
#tdefine SG_GETNUM2

uint32_tsq_padil;

union {
uint32_tsqu_id;
charsqu_buf[SG_NAMELEN];
} sq_un;

} SgNameReq_t;
#tdefine sq_idsq_un.squ_id
#tdefine sq_namesq_un.squ_buf

typedef struct _sgnamereply {
union {
uint32_tsru_id;
charsru_buf[SG_NAMELEN];
} sr_un;

} SgNameReply_ t;

UNIX ioctl structure

typedef union _sgnamereqrep {
SgNameReq_treq;
SgNameReply_treply

} SgNameReqReply t;

37

Chapter 2: StorNext File System APIs
File System Configuration and Location Management APIs

reQuest Fields

sg_flagslf SG_GETNAME is set, sq_id contains the ordinal of the stripe
group to search for. If SG_GETNUM is set, then
sq_name contains the ASCII name of the stripe group to
search for.

sr_un.sru_idID of stripe group to search for.

sr_un.sru_bufName of stripe group to search for.

Reply Fields
sr_un.sru_bufBuffer with name of stripe group.

sr_un.sru_idOrdinal of stripe group.

Error Returns

VOP_ENOENTNo more entries available.
VOP_EFAULTBuffer is invalid.
VOP_EINVALInvalid stripe group ordinal.

CvApi_SetAffinity This API sets the affinity for a file.

Handle

Target file.

Note: Affinities can direct allocations to specific stripe groups. This
call sets the current affinity for the file and affects all future
allocations.

Structure

typedef struct setaffinityreq {
uint64_tsq_affinity;
} SetAffinityReq_t;

No reply structure

38 File System APl Guide

Chapter 2: StorNext File System APIs
Access Management APIs

UNIX ioctl structure.

None. Use SetAffinityReq_t directly.

Request Fields

sq_affinityAffinity identifier for file>

Access Management APIs

CvApi_ClearConcWrite

CvApi_ClearRdHoleFail

File System APl Guide

These APIs allow you to control concurrent file operations and quotas,
and they provide additional reporting utilities.

This API disables concurrent writes to a file.

Handle

Target file.

Notes

This API disables concurrent writes for all users of the file. This works on
a file, not handle basis.

Structure

None.

This API causes reads from a hole in the file to return zero (default
behavior).

39

Chapter 2: StorNext File System APIs

Access Management APIs

CvApi_CvFstat

40

Handle

Target file.

Notes

This restores the default behavior of returning zero for a read from non-
allocated space in a file.

Structure

None.

This API gets the UNIX-like stat struct from a file.

Handle

Target file.

Notes

This call performs much the same as the UNIX stat(2) call. See also
CvApi_StatPlus.

Structure

No request structure.

typedef struct _statreply {
int32_tsr_dev;
uint32_tsr_mode;
uint64_tsr_ino;
uint64_tsr_size;
uint64_tsr_nblocks;
int32_tsr_nlink;

uint32_tsr_bsize;

File System APl Guide

Chapter 2: StorNext File System APIs
Access Management APIs

int32_tsr_uid;
int32_tsr_gid;

int32_tsr_rdev;
int32_tsr_atim;

int32_tsr_mtim;
int32_tsr_ctim;
} StatReply_t;
UNIX ioctl structure:

None. Use StatReply_t directly.

Reply Fields:

sr_dev Device identifier, unique per mounted file system.
sr_modeUnix mode.

sr_ino File handle, unique per file system.

sr_size Size of file in bytes.

sr_nblocksNumber of “basic” (512 byte) blocks allocated to file.
sr_nlink Number of links to the file.

sr_bsizeBlocksize of file system.

sr_uid Unix User Identifier.

sr_gid Unix Group Identifier.

sr_rdev Device node for devices. 0 on the file system.
sr_atim Last access time in seconds since January 1, 1970.
sr_mtimLast modify time in seconds since January 1, 1970.

sr_cim Last “change” time in seconds since January 1, 1970.

CvApi_CvOpenStat This API retrieves open status on the given file.

File System APl Guide 41

Chapter 2: StorNext File System APIs

Access Management APIs

CvApi_GetDiskinfo

42

Handle

Target file.

Notes

This method returns status regarding the open state of a file. These
status objects are useful in finding the open state across the cluster. The
os_sharedwrite and os_sharedread bits may be used to indicate
whether a file is opened on another client. The os_opencount and
os_refcount values indicate how the local client is using the given file.

Structure

typedef struct _openstatreply {
uint32_tos_sharedwrite;
uint32_tos_sharedread;
uint32_tos_opencount;
uint32_tos_refcount;

} OpenStatReply_t;

This API gets disk information for a stripe group.

Handle

Any, but usually handle to root directory.

Notes

The information returned by this call is somewhat limited. More
information may be returned in future releases.

Structure

t#tdefine MAXPATHS 4
typedef struct _cvdiskinfo {

char di_name[256]; /* CVFS disk name */
uint32_t di_nameloc; /* disk byte offset to disk name */
uint32_t di_vhsize; /* Volume header size */

File System APl Guide

File System APl Guide

Chapter 2: StorNext File System APIs
Access Management APIs

char di_serialnum[64]; /* WWN or disk serial number */
uint32_t di_sectorsize; /* disk sector size in bytes */
uint32_t di_npaths; /* number of active paths */
struct di_dev_info {

char d_bdev[256]; /* block device name */

char d_rdev[256]; /* character device name */

} di_paths[MAXPATHS];
} CvDiskInfo_t;

typedef struct _diskinforeq {
uint32_t sq_sg;
uint32_t sq_pade;
CvUserAddr_tsq_dinfobuf;
CvUserAddr_tsq_dcnt;

} DiskInfoReq_t;

No reply structure

UNIX ioctl structure.

None. Use DiskinfoReq_t directly.

Fields, CvDiskinfo_t

di_nameDisk name. For example, “CvfsDisk 0".
di_namelocDisk offset (in bytes) where the disk name resides.
di_vhsizeThe size of the disk volume header, in bytes.

di_serialnumEither the disk’'s WWN (for fibre-attached devices) or its
serial number.

di_sectorsizeSector size of the disk, in bytes.
di_npathsNumber of paths to the disk.

di_pathsA structure containing the block and character device names for
active paths to the disk. A single disk may have up to
MAXPATHS (4) paths. Therefore, there may be up to 4
block and raw device names for a single disk.

reQuest Fields

sg_id D of stripe group.
sqg_dinfobufA user supplied CvDiskInfo_t array to be filled in.

43

Chapter 2: StorNext File System APIs

Access Management APIs

CvApi_GetQuota

44

sq_dcntPointer to a uint32_t. On input, this integer should be the
maximum number of disk info structures to be returned
(that is, the size of the array sq_dinfobuf). On output, the
integer will contain the number of disk info structures
actually returned.

Error Returns

VOP_ENOENTsq_id is not a valid stripe group number.

VOP_E2BIGThe stripe group contains more disks than the user supplied
sq_dcnt.

VOP_EFAULTsq_dinfobuf or sq_dcnt is an invalid pointer.

This API gets the current quota usage and limits for a given user or
group.
Handle

Any, but usually handle to root directory.

Notes

The source handle may refer to any open file or directory that resides on
the file system. It is not necessary that the file be owned by the user or
group whose quota values are being queried.

Structure

#define MAX_QUOTA_NAME_LENGTH 256

typedef struct getquotareq {
uint32_t gq_type;
#define QUOTA_TYPE_USER(uint32_t)’U’
#define QUOTA_TYPE_GROUP(uint32_t)’G’

uint32_t gq_pad;

char gq_quotaname[MAX_QUOTA_NAME_LENGTH];
} GetQuotaReq_t;

File System APl Guide

File System APl Guide

Chapter 2: StorNext File System APIs
Access Management APIs

typedef struct getquotareply {
uinté4_t gr_hardlimit; /* in bytes */
uint64_t gr_softlimit; /* in bytes */

uinté4_t gr_cursize; /* in bytes */
uint32_t gr_timelimit; /* in minutes */
uint32_t gr_timeout; /* in seconds since January 1,

1970 */
} GetQuotaReply_t;

typedef union _getquotareqreply {
GetQuotaReq_t req;
GetQuotaReply t reply;

} GetQuotaReqgReply t;

reQuest Fields

gq_typeEither QUOTA_TYPE_USER or QUOTA_TYPE_GROUP.

gq_quotanameThe null-terminated name of the user or group whose
qguota is being queried.

Reply Fields

gr_hardlimitThe hard quota limit in bytes, rounded up to the nearest file
system block.

gr_softlimitThe soft quota limit in bytes, rounded up.

gr_cursizeThe current usage in bytes, rounded up.

gr_timelimitWhen the soft limit is exceeded, the amount of time (in
minutes) before the soft limit will be treated as a hard
limit.

gr_timeoutlf the soft quota has been exceeded, gr_timeout will contain
the time (in seconds since January 1, 1970) when the soft
limit will be treated as a hard limit.

Error Returns

VOP_ENOTSUPThe quota system is not enabled on the FSM and/or
client.

VOP_INVALgq_type is not QUOTA_TYPE_USER or
QUOTA_TYPE_GROUP\

45

Chapter 2: StorNext File System APIs

Access Management APIs

CvApi_GetVerinfo

46

VOP_ENOENTgq_quotaname is not a valid user or group name.

This API retrieves version information.

Handle

Any.

Notes

This returns the version, build, and creation date of the kernel, as well as
the version of the external API. Note that since individual calls can be
up-revved independently, the version number that is returned may not
be the same for all calls.

Structure

No request structure.
#define CVVERINFO_MAX 64

typedef struct _verinfo_reply {

char vr_version[CVWERINFO_MAX];
char vr_build[CVVERINFO_MAX];
char vr_creationdate[CVWERINFO_MAX];

uint32_tvr_apiversion;
uint32_tvr_padil;
} VerInfoReply t;

Reply Fields

vr_versionA string containing the release and build number, such as
#@$ CVFS Client Revision 2.1.1 Build 60.

vr_build A string containing platform information, such as #!@$ Built for
Windows 2000 i386.

vr_creationdateA string containing the creation date, such as #@$
Created on Thu Dec 19 14:15:53 PST 2010.

vr_apiverionThe current version of the external API.

File System APl Guide

CvApi_LoadExtents

File System APl Guide

Chapter 2: StorNext File System APIs
Access Management APIs

This API pre-loads a range of extents for a file.

Handle

Target file.

Notes

This call requests that the extent information from the FSM be pre-
loaded into the file system. This cuts down on first access (cold-start)
time. If there are any holes in the file, they will be preserved. No space is
allocated by this call.

Structure

typedef struct _LoadExtReq {
uinte4_tlq_size;
uinte4_tlq_offset;
uint32_tlq_padi;
uint32_tlq_pad2;

} LoadExtReq_t;

reQuest Fields

lg_size The number of bytes to load. Specifying zero (0) will cause the
extents for the entire file to be loaded. If Ig_size + Ig_offset
extends beyond the end of the file, extents will be loaded up
to the end of the file.

lg_offsetStarting offset to begin loading. The offset does not have to be
on an existing extent boundary; any offset will suffice.

Error Returns

VOP_EINVALOffset is greater than end of file.

Other Communications failure with the FSM.

47

Chapter 2: StorNext File System APIs

Access Management APIs

CvApi_MoveRange

48

This APl moves a range of extents from a source file to a target file
within the same SNFS file system.

Structure

int

CvApi_MoveRange(

int

uint64_t
uint64_t
uint64_t
uint64_t
tmspec_t
tmspec_t
uint32_t
uint64_t

reQuest Fields

f_fd,
f_target_ino,
f_source_froffset,
f_target_froffset,
f_length,
f_source_mtime,
f_target_mtime,

f _flags,

*f _rsvd)

f fd: Source file descriptor.

f_target_ino: Target file inode which will receive extents from the source.

This inode should be acquired by calling
CVApi_CVFStat and using the sr_ino field in the
returned StatReply_t object. The file must be
kept open during the API invocation.

Note: Do not attempt to use the st_ino returned by

UNIXstat(2), as this will often cause
CvApi_MoveExtents to fail. Also note, do not use
the inode number returned by
CvApi_ExtendedStat either as this could cause
failures.

f_source_froffset: Starting byte offset in the source file. This offset can

be anywhere in the file; it does not have to
correspond exactly to the starting offset of an
extent. However, it must correspond to a multiple of
the file system block size and the range must be
within EOF or EINVAL will be returned. (See special
notes below regarding 'Append Mode'.)

File System APl Guide

Chapter 2: StorNext File System APIs
Access Management APIs

f_target_froffset: Starting byte offset in the target file. This offset can be
anywhere in the file; it does not have to correspond
exactly to the starting offset of an extent. However,
it must correspond to a multiple of the file system
block size or EINVAL will be returned. Overlap with
an existing extent on the target will result in the
target extent being discarded. (See Special Rules for

Append Mode.)

f_length: Number of bytes to move. Must correspond to a multiple of
the file system block size or EINVAL will be returned.
The range on the source file must be entirely within
EOF or EINVAL will be returned. (See Special Rules
for Append Mode.)

f_source_mtime: This parameter is reserved for future use.
f_target_mtime:This parameter is reserved for future use.

f_flags: Supported flags only, otherwise EINVAL is returned.
#define MOVE_RSVD1 0x000000001 /* Invalid - reserved for future */
#define MOVE_APPEND ©x000000002 /* Append Mode */

The Append mode modifier provides a means to coalesce multiple
source file fragments to a singe target file. Each call to this API will place
the source extents at the current EOF on the target file and then move
EOF on the target file to account for the added extent space. Every
subsequent call, when using append, mode must start at exactly EOF on
the target file (i.e., f_target_froffset).

Also, f_target_froffset must be FS block aligned. Therefore, before
an append mode invocation you must ensure that the target file EOF is
FS block aligned. If it is not, then it is recommended to use the

ftruncate(2) system call to extend the target EOF to FS block alignment.

File System APl Guide 49

Chapter 2: StorNext File System APIs

Access Management APIs

50

WARNING: Do not use CvApi_SetFileSize for this purpose as it
will leave uninitialized (ie. 'corrupt’) data in this file
region.

Also, in order to be robust in the event of a system crash
and restart, before invoking the API you should check the
target file EOF, perform ftruncate(2) as needed, and
adjust f_target froffset, f source froffset, and
f length to ensure that the range begins at exactly EOF
on the target file.

Special Rules for Append Mode

1 f_target_froffset must exactly equal EOF on the target file or
EINVAL is returned.

2 The range spanned by f_source_froffset and f_length must be
within EOF on the source file or EINVAL is returned.

Reply Fields

f_rsvd: Reserved for future use. Must be NULL.

Error Returns

EPERM The user does not have permission to use this APl. The API can
only be used by superuser.

ENOENT The source file or target file doesn't exist. You may also receive
this error if the source and target files do not reside
on the same file system.

EBADF The source or target file is not open with write permission.
EBUSY Either the source or target file mtime verification failed.

EWOULDBLOCKEither the source or destination file has DMAPI events
present. Files must be present on disk. (On Windows
the error status returned is STATUS_FILE_IS_OFFLINE.)

EINVAL See above.

File System APl Guide

CvApi_SetConcWrite

CvApi_SetQuota

File System APl Guide

Chapter 2: StorNext File System APIs
Access Management APIs

This API allows concurrent writes to a file.

Handle

Target file.

Notes

This call allows multiple handles to write concurrently to a file without
being serialized. It is important to note that this ioct1 call operates on
the file, not the handle. Once a file is in concurrent write mode, all users
of the file will be able to write concurrently. The concurrent write
feature is reset to the default (non-concurrent) when the last user closes
the file, or when it is explicitly disabled.

No data buffering is done. Malformed I/O returns the platform
equivalent of EINVAL. It is the responsibility of those using this feature
to maintain separate handles and separate offsets. The primary users of
this feature are drivers that are layered directly on top of the FSD and
use IRPs to communicate.

Structure

None.

This API sets quota limits for a given user or group.

Handle

Any, but usually handle to root directory.

Notes

The source handle may refer to any open file or directory that resides on
the file system. It is not necessary that the file be owned by the user
whose quota values are being queried.

The specified hard and soft limits are automatically rounded up to the
nearest file system block by the quota system.

51

Chapter 2: StorNext File System APIs

Access Management APIs

52

Structure

#define MAX_QUOTA_NAME_LENGTH 256

typedef struct _setquotareq {
char sq_quotaname[MAX_QUOTA_NAME_LENGTH];
uint32_t sq_type;
#define QUOTA_TYPE_USER(uint32_t)’U’
#define QUOTA_TYPE_GROUP(uint32_t)’G’

uint32_t sq_timelimit; /* in minutes */
uint64_t sq_hardlimit; /* in bytes */
uint64_t sq_softlimit; /* in bytes */

} SetQuotaReq_t;

No reply structure

UNIX ioctl structure.

None. Use SetQuotaReq_t directly.

reQuest Fields

sq_quotanameThe name of the user or group whose quota limits are
being set.

sq_typeEither QUOTA_TYPE_USER or QUOTA_TYPE_GROUP.
sq_timelimitThe soft quota grace period, in minutes.
sq_hardlimitThe hard limit, in bytes.

sq_softlimitThe soft limit, in bytes.

Error Returns

VOP_ENOTSUPThe quota system is not enabled on the FSM and/or
client.

VOP_INVALsq_type is not QUOTA_TYPE_USER or
QUOTA_TYPE_GROUP.

VOP_ENOENTSsq_quotaname is not a valid user or group name.
VOP_IOsq_softlimit is greater than sq_hardlimit (or an internal error
occurred).

File System APl Guide

CvApi_SetRdHoleFail

CvApi_StatFs

File System APl Guide

Chapter 2: StorNext File System APIs
Access Management APIs

This API causes reads from a hole in a file to fail.

Handle

Target file.

Notes

During recovery processing after a client or FSM crash, it can be
desirable to have reads from non-allocated space return an error rather
than the default of zeros. This call affects all handles of a file. If an
attempt is made to read from non-allocated space, the platform
equivalent of EACCESS will be returned. On Windows, this translates
into STATUS_ACCESS_DENIED. This behavior remains in affect until
all handles to the file have been closed or the feature has been explicitly
cleared.

Structure

None.

This API gets file system information.

Handle

Any, but usually handle to root directory.

Notes

Gets basic file system information.

Structure

No request structure.
typedef struct __statfs {
uint32_tfr_options
#define FSOPTION_DMIG(1<<0)
#define FSOPTION_QUOTAS(1<<1)

53

Chapter 2: StorNext File System APIs
Access Management APIs

#define FSOPTION_BRLS(1<<2)
#define FSOPTION_GLOBALSU(1<<3)
#define FSOPTION_WINSEC(1<<4)

uint32_tfr_blocksize;

uint64_tfr_epoch;

uinté64_tfr_total_blocks;

uinté64_tfr_blocks_free;

uint32_tfr_reserved[8];
} StatFsReply_t;

UNIX ioctl structure:

None. Use StatFsReply_t directly.

Reply Fields
fr_optionsMask containing enabled file system options.

fr_blocksizeFile system basic block size in bytes.

fr_epochFile system creation date in microseconds since January 1,
1970.

fr_total_blocksTotal capacity of the file system in blocks.
fr_blocks_freeNumber of unallocated blocks.

fr_reservedFields reserved for future use.

Error Returns

VOP_EFAULTBad buffer offset.
VOP_ENOMEMOut of memory.

Other Communications failure with the FSM.

CvApi_StatPlus This API gets the UNIX-like stat struct from a file, plus additional file
information

54 File System APl Guide

Chapter 2: StorNext File System APIs
Access Management APIs

Handle

Target File

Notes

This call performs much the same as the UNIX stat(2) call except that
additional information is returned such as the storage state. Also see
CVApi_CVFStat.

Structure

No request struct.

typedef struct _statplusreply {
int32_tsr_dev;
uint32_tsr_mode;
uint64_tsr_ino;
uint64_tsr_size;

uint64_tsr_nblocks;

int32_tsr_nlink;
uint32_tsr_bsize;

int32_tsr_uid;
int32_tsr_gid;

int32_tsr_storagestate;
#tdefine STORESTATE_ON_DISK_ONLY(1)
#tdefine STORESTATE_ON_TAPE_ONLY(2)
#tdefine STORESTATE_ON_DISK_AND_TAPE(3)

int32_tsr_atim;

int32_tsr_mtim;
int32_tsr_ctim;

uint32_tsr_reserved[8];
} StatPlusReply_t;

File System APl Guide 55

Chapter 2: StorNext File System APIs
Access Management APIs

UNIX ioctl structure:

None. Use StatPlusReply_t directly.

Reply Fields

sr_dev Device identifier, unique per mounted file system.
sr_modeUnix mode.

sr_ino File handle, unique per file system.

sr_size Size of file in bytes.

sr_nblocksNumber of “basic” (512 byte) blocks allocated to file.
sr_nlink Number of links to the file.

sr_bsizeBlocksize of file system.

sr_uid Unix User Identifier.

sr_gid Unix Group ldentifier.

sr_storestateData migration: current file storage state.
sr_atim Last access time in seconds since January 1, 1970.
sr_mtimLast modify time in seconds since January 1, 1970.
sr_cim Last “change” time in seconds since January 1, 1970.

sr_reservedFields reserved for future use.

Error Returns

VOP_EFAULTBad buffer offset.
VOP_ENOMEMOut of memory.

Other Communications failure with the FSM.

CvApi_SwapExtents This API swaps all the extents for a file.

Handle

Source handle.

56 File System APl Guide

File System APl Guide

Chapter 2: StorNext File System APIs
Access Management APIs

Notes

During defrag, the defrag utility allocates an extent and copy into it the
data for a file. When the copy is complete, it attempts to swap the
extents for the file, replacing the prior highly fragmented extent list in a
file with, hopefully, a much smaller one.

This API swaps all the extents for one file (the file identified by the
calling handle) with the file identified in the API structure. After this
operation, the caller can unlink the source handle (if desired).

Structure

typedef struct _swapextreq {
uint64_tsq_targhandle;
uint32_tsq_msec;
uint32_tsq_padi;

} SwapExtReq_t;

No reply structure

UNIX ioctl structure.

None. Use SwapExtReq_t directly.

reQuest Fields

sg_handleHandle to target file that will have its extents replaced by the
source. This handle should be acquired by calling
CVApi_CVFStat and using the sr_ino field in the returned
StatReply_t object. NOTE: Do not attempt to use the
st_ino returned by UNIXstat(2), as this will often cause
CvApi_SwapExtents to fail.

sq_msecA date in UNIX time(2) format. If non-zero, the value of
sg_msec is checked against the modification time of the
source file. If they are not the same, VOP_EBUSY is
returned. So, sq_msec can be used as an additional sanity
check to prevent attempts to defragment files that are
actively being written.

57

Chapter 2: StorNext File System APIs
Access Management APIs

Error Returns

VOP_EBUSYThe file is in use.

VOP_EPERMThe user does not have permission to defrag the file.
Under UNIX, the user must be superuser or the owner
of the file. Under Windows, the user must have write
access to the file.

VOP_ENOENTThe file doesn't exist.
VOP_EINVALThe file is not a “regular” file

58 File System APl Guide

File System APl Example

M

. Appendix A
™

L

Following is a test APl sample program that illustrates how to use many
of the StorNext File System APIs described in this document. This
example applies only to the File System APIs, not the Storage Manager
APIs.

/*
Copyright (c) 1997-2011
All Rights Reserved.
StorNext File System
Provided AS-IS, with no warranties expressed or implied.

*/

/*

* tapi.c -- Test API

*

* Sample application to illustrate how to use the SNFS external API.

*

* This requires a 'getopt' routine that is available on most unix boxes,

*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.hs>
#include <errno.h>
#include <fcntl.h>
#include <time.h> /* localtime () */

#if defined (_WIN32)
#include <io.h> /* for posix open(2) */
#endif

/* Local Headers */

#if defined(_WIN32)
#include <cvinttypes.h> /* for integer typedefs */
#include <bsd getopt.c> /* need a getopt routine */

File System API Guide 59

Appendix A: File System API Example

#include <bsd_strtoll.c»>
#endif

extern char *optarg;
extern int optind;

#if defined(_ linux)
#include <stdint.h>
#ifndef NULL
#define NULL 0
#endif /* NULL */
#endif /* linux */

#include <extapi.hs>
#include <cvapi.h>

/* Macros */
#if defined(WIN32)

#define ARG64X "Ox%I64x"

#define ARG64D "$I644d"
#telse

#define ARG64X "Ox%1llx"

#define ARG64D "glld"

#endif /* WIN32 */

#define EXTMAX24
#define MAXDISKS 32

/* File scope variables */
char *Progname ;

int Verbose;

int ErrorFlag;

/* External variables */
extern int optind;

/* External functions */
/* Structures and Unions */

/* Signal Catching Functions */

/* NONE */
void
Usage ()

60

fprintf (stderr, "Usage:
fprintf (stderr, "\t -2
fprintf (stderr, "\t -a
fprintf (stderr, "\t -B
fprintf (stderr, "\t -b
fprintf (stderr, "\t -C
fprintf (stderr, "\t -c
fprintf (stderr, "\t -D
fprintf (stderr, "\t -E
fprintf (stderr, "\t -F

%$s <args> filename \n", Progname) ;
alloc space\n");

affinity\n");

stat fs\n");

broadcast size on alloc\n");

set concurrent write\n") ;

clear concurrent write\n");

get disk info for stripe group <n>\n") ;

print extent list\n");
set affinity\n");

File System APl Guide

fprintf (stderr, "\t -f
fprintf (stderr, "\t -G
fprintf (stderr, "\t -g
fprintf (stderr, "\t -I
fprintf (stderr, "\t -L
fprintf (stderr, "\t -1
fprintf (stderr, "\t -N
fprintf (stderr, "\t -n
fprintf (stderr, "\t -O
fprintf (stderr, "\t -o
fprintf (stderr, "\t -P
fprintf (stderr, "\t -p
fprintf (stderr, "\t -Q
fprintf (stderr, "\t -qgq
fprintf (stderr, "\t -R
fprintf (stderr, "\t -r
fprintf (stderr, "\t -S
fprintf (stderr, "\t -s
fprintf (stderr, "\t -T
fprintf (stderr, "\t -t
fprintf (stderr, "\t -v
fprintf (stderr, "\t -V
fprintf (stderr, "\t -w
fprintf (stderr, "\t -x
fprintf (stderr, "\t -Y
fprintf (stderr, "\t -y
fprintf (stderr, "\t -Z
fprintf (stderr, "\t -z
}
/*
* PURPOSE
* Print out the time for
*
/
void
PrintTime (

int32 tf secs)

struct tm*tp;
tp =

switch (tp->tm mon)

case O:
printf ("Jan") ;
break;
case 1:

printf ("Feb")
break;
case 2:

I

printf ("Mar") ;

break;
case 3:

printf ("Apr") ;

break;
case 4:

File System APl Guide

localtime((time t

Appendix A: File System API Example

get affinity \n");

get stripe group name from Ordinal\n") ;

get stripe group ordinal from Name\n") ;

Info for stripe group <n> \n");

get physical Location for offset in file\n");
(alloc flag) load extent in client fsd\n");
keep size on allocation \n");

nbytes [kmg] \n");
Open stat file\n");
offset [kmg] \n");

punch hole \n");

get PerfectFit status\n");

(user) set the quota limits for (user)\n");
(user) get the quota usage and limits for
set read hole fail \n");

clear read hole fail \n");

stat file (old version)\n") ;

(alloc flag) stripe align allocation \n");
stat file (new \"plus\" version)\n");
(alloc flag) set perfect fit status\n");
verbose\n") ;

get version info\n");

wait before exiting\n") ;

load extents\n") ;

VerifyAlloc allocation\n") ;

Toggle PerfectFit status\n");

set file size\n");

size [kmgl\n");

an 'ls' style listing

*)&f secs) ;

(user)\n") ;

61

Appendix A: File System API Example

}
/*

printf ("May") ;
break;

case 5:
printf ("Jun") ;
break;

case 6:
printf ("Jul") ;
break;

case 7:
printf ("Aug") ;
break;

case 8:

printf ("Sep") ;

break;
case 9:

printf ("Oct") ;

break;
case 10:

printf ("Nov") ;

break;
case 11:

printf ("Dec") ;

break;

printf (" %d ", tp->tm mday) ;
printf ("%$02d:%024d",

* PURPOSE
Stat file, old wversion

*/

int

StatFile (

62

int f fd,
char

*f filename)

int error = 0;
StatReply t sb;
/* a

* Get the stats
*/

error = CvApi CvFstat (f fd,

if (error)
return error;

/*

tp->tm hour,

&sb) ;

tp->tm min) ;

* Print out the stats in no particular order

*/

printf ("File stats for file
printf ("Dev %$d rdev %d nlink %d bsize %d\n",

sb.sr dev, sb.sr rdev, sb.sr_nlink,
printf ("Size " ARG64D " nblocks " ARG64D "\n", sb.sr size, sb.sr nblocks);

printf ("Inode " ARG64D " uid %d gid %d mode 0%0 \n",

sb.sr ino, sb.sr uid,

printf ("atime: "

)i

PrintTime (sb.sr atim);

printf (" mtime:

")

PrintTime (sb.sr mtim) ;

'$s'\n", f filename) ;

sb.sr gid,

sb.sr bsize);

sb.sr mode) ;

File System APl Guide

printf (" ctime: ");
PrintTime (sb.sr ctim);
printf ("\n") ;

return error;

),
* PURPOSE
* Stat file, new "plus" version
*/
int
StatFilePlus (
int £ fd,
char *f filename)
{
int error = 0;
StatPlusReply t sb;
char *storestate;
/*
* Get the stats
*/

error = CvApi StatPlus(f fd, &sb);
if (error) {
return error;
A
* Print out the stats in no particular order
*/

Appendix A: File System API Example

printf ("File stats for file '%s'\n", f filename);

printf ("Dev %d nlink %d bsize %d\n",
sb.sr dev, sb.sr nlink, sb.sr bsize);

switch(sb.sr storestate) {

case STORESTATE ON_DISK ONLY:

storestate = "on disk only";
break;

case STORESTATE ON_TAPE ONLY:
storestate = "on tape only";
break;

case STORESTATE ON DISK AND TAPE:
storestate = "on disk and tape";
break;

default:
storestate = "unknown";
break;

printf ("Store state: %d (%s)\n", sb.sr storestate, storestate);

printf ("Size " ARG64D " nblocks " ARG64D "\n",

sb.sr size, sb.sr nblocks);

printf ("Inode " ARG64D " uid %d gid %d mode 0%0 \n",
sb.sr ino, sb.sr uid, sb.sr gid, sb.sr mode) ;

printf ("atime: ");
PrintTime (sb.sr atim);

printf (" mtime: ");
PrintTime (sb.sr mtim) ;
printf (" ctime: ");

PrintTime (sb.sr ctim) ;
printf ("\n") ;
return error;

File System APl Guide

63

Appendix A: File System API Example

}
/*

* PURPOSE

*/

int

Stat VFS

StatFs(

}
/*

int f fd,
char *f filename)

int error

StatFsReply t sb;
time t esecs;
/*

* Get the stats

*/

error = CvApi StatFs(f fd, &sb);

if (error) {
return error;

}
/*

* Print out the stats in no particular order

*/

printf ("FS stats for '%s'\n",
printf ("options: 0x%x\n", sb.

f filename) ;

fr options) ;

if (sb.fr options & FSOPTION DMIG)
printf ("\tFSOPTION DMIG\n") ;

if (sb.fr options & FSOPTION QUOTAS)
printf ("\tFSOPTION QUOTAS\n") ;

if (sb.fr options & FSOPTION_ BRLS)
printf ("\tFSOPTION_ BRLS\n") ;

if (sb.fr options & FSOPTION GLOBALSU)
printf ("\tFSOPTION GLOBALSU\n") ;

if (sb.fr options & FSOPTION WINSEC)
printf ("\tFSOPTION WINSEC\n");

esecs = (time_t) (sb.fr epoch
printf ("epoch: " ARG64X "

printf ("\n") ;
return error;

* PURPOSE

*

*/

int

OpenStat file

OpenStatFile (

64

int £ fd,
char *f filename)
int error =
OpenStatReply t sb;
/*
* Get the stats
*/

o
ss",

/ (uint64_t)1000000);
sb.fr epoch,
printf ("block size: %d\n", sb.fr blocksize);
printf ("total blocks: " ARG64D "\n",
printf ("blocks free: " ARG64D "\n",

printf ("inode stripe breadth: " ARG64D "\n",

0;

ctime (&esecs)) ;

sb.fr total blocks) ;
sb.fr blocks free);
sb.fr inode_stripe_ width) ;

File System APl Guide

s
* PURPOSE

*

*/

int

Appendix A: File System API Example

error = CvApi CvOpenStat (f fd, &sb);
if (error) {

return error;
1

/*
* Print out the stats in no particular order
*
/
printf ("File Open_stats for file '%s'\n", £ filename);
printf ("RefCount: %u\n", sb.os refcount) ;
printf ("OpenCount: %u\n", sb.os_opencount) ;
if (sb.os_sharedread)
printf ("SharedRead TRUE\n") ;
else
printf ("SharedRead FALSE\n") ;
if (sb.os_sharedwrite)
printf ("SharedWrite TRUE\n") ;
else
printf ("SharedWrite FALSE\n") ;
printf ("\n") ;
return error;

Get the physical location for a file given an offset

GetPhysLoc (

}

/*
* PURPOSE

int £ _fd,

char *f filename,

uinte4 t f offset)

int error = 0;
CvExternalExtent t *exp;

PhysLocReply t loc;
/*

* Get the location
*/
error = CvApi GetPhysLoc (f fd, f offset, &loc);
if (error)
return error;

printf ("Physical location for offset " ARG64X " in file '$s' \n",
f offset, f filename);

exp = &loc.pr_ extent;

printf ("Extent: sg %$d file relative base " ARG64X "\n" , exp->ex sg,
exp->ex frbase) ;

printf (" filesystem base " ARG64X, exp->ex base);

printf (" filesystem end " ARG64X , exp->ex end);

printf ("\n") ;

printf ("SG breadth " ARG64X " depth " ARG64X "\n", loc.pr breadth,
loc.pr depth) ;

printf ("volume offset " ARG64X " device relative blkoffset " ARG64X "\n",
loc.pr _voloffset, loc.pr_blkoffset);

printf ("Device pseduo id %$x\n", loc.pr_edev);

return error;

File System APl Guide

65

Appendix A: File System API Example

* Dump out the extents for a file

*/

int

GetExtList (
intf f£d)
CvExternalExtent t *pbuf = NULL, *junkbuf = NULL, *exp;
int allocsize;
uint32 t cnt, i, numbufs;
int error = 0;
uinté4_t offset;
StatReply t sb;
/* a

* Get the stats

*/
error = CvApi CvFstat (f fd, &sb);
if (error)

fprintf (stderr, "Can not stat file, error %d\n", error);

return error;

/*
* Alloc space for the extent buffer. We swag
* and get 24 extents at a time.
*
/
numbufs = EXTMAX;
allocsize = sizeof (CvExternalExtent t) * numbufs;
buf = malloc(allocsize) ;
if (buf == NULL) ({

fprintf (stderr, "Can not alloc space for extent buffers\n");

return 1;

memset (buf, 0, allocsize);
if (ErrorFlag == 3) /* EINVAL */
offset = 99999;

else {
offset = 0;
!
cnt = 0;
do {
if (ErrorFlag == 2) /* EFAULT */

error = CvApi GetExtList (f fd, offset, &numbufs, junkbuf) ;

else {

error = CvApi GetExtList (f fd, offset, &numbufs, buf);

if (error) {
if (error != ENOENT) ({
fprintf (stderr,

"Can not get extent list, offset " ARG64X " error %d\n",

offset, error);
L
* ENOENT means no more extents
*/
if ((error == ENOENT) && (ErrorFlag != 1))

{

66

File System APl Guide

Appendix A: File System API Example

}

exp = buf;

for (i=0; i<numbufs; i++)

printf ("Extent %d frbase " ARG64X " sg 0x%x fsbase " ARG64X
" fsend " ARG64X " depth %$x\n",

cnt++, exp->ex frbase, exp->ex sg, exp->ex base, exp->ex end,

exp->ex _depth) ;
/* Look for the next extent. */

offset = exp->ex frbase + ((exp->ex end + 1) - exp->ex base);
exp++;
} while (error == 0);

printf ("%d total extents\n", cnt);
return error;

}
/*
* PURPOSE
* Punch a hole in a file
*/
int
PunchHole (
int £ fd,
char *f filename,

}
/*

uinte4 t f offset,
uinté64_t f nbytes)

uint64 toffset, end, nblks, freed;

int error = 0;

offset = £ _offset;

end = £ offset + f nbytes;

end--; /* last byte, inclusive */
if (Verbose)

printf ("Punching a hole in '%s' from " ARG64X " to " ARGE4X "\n",

f filename, f_offset, end);

error = CvApi PunchHole (f fd, &offset, &end, &nblks, &freed);
if (error)
return error;

if (Verbose)
printf ("Hole punched in '%s' from " ARG64X " to " ARG64X
"blks freed " ARG64X " , blocks now in file " ARG64X "\n",
f filename, offset, end, freed, nblks);

}

return error;

* PURPOSE

*

*/

int

Load extents space

LoadExtents (

int £ fd,
char *f filename,

File System APl Guide

67

Appendix A: File System API Example

uinté64_t f offset,
uint64 t f nbytes)

uinte64 toffset, nbytes;
int error = 0;
offset = £ offset;
nbytes = f nbytes;
if (Verbose) {
printf ("Loading extents in '$%$s' " ARG64D " bytes at offset "
} ARG64D "\n", f filename, nbytes, offset);

error = CvApi LoadExtents (f fd, nbytes, offset);
if (error) f{
return error;

if (Verbose)
printf ("Loaded " ARG64D " bytes starting at offset " ARG64D "\n",
nbytes, offset);

}
return error;
}
/*
* PURPOSE
* Alloc space
*/
int
AllocSpace (
int £ fd,
char *f filename,
uinte4 t f offset,
uinté64_t f nbytes,
uinte4 t £ affinity,
uint32 t £ flags)
{
uint64 toffset, nbytes;
int error = 0;
offset = £ _offset;
nbytes = f nbytes;
if (Verbose) ({
printf ("Allocating space in '%s' " ARG64D " bytes at offset "
ARG64D "\n", f filename, nbytes, offset);
}
error = CvApi AllocSpace(f fd, &nbytes, &offset, f affinity, £ flags);
if (error) {
return error;
if (Verbose) ({
printf ("Allocated " ARG64D " bytes starting at offset " ARG64D "\n",
nbytes, offset);
}
return error;
}
/*
* PURPOSE
* Get PerfectFit status
*/
int

PerfectFitStatus (

68 File System APl Guide

Appendix A: File System API Example

int £ fd,
char *f filename)

int isperfectfit;
int error;
error = CvApl GetPerfectFitStatus(f fd, &isperfectfit);
if (error) f{
return error;

if (Verbose)
printf ("File %s does%s have the PerfectFit bit set.\n",
f filename, isperfectfit ?» "" : " not");

}

return error;

.
* PURPOSE
* Get PerfectFit status
*/
int
TogglePerfectFitStatus (
int f fd,
char *f filename)
{
int isperfectfit;
int setperfectfit;
int error;
error = CvApl GetPerfectFitStatus(f fd, &isperfectfit);
if (error) f{
return error;
if (Verbose)
printf ("%s PerfectFit bit on file %s.\n",
isperfectfit ? "Clearing" : "Setting", f filename);
if (isperfectfit)
setperfectfit = 0;
else
setperfectfit = 1;
error = CvApl SetPerfectFitStatus(f fd, setperfectfit);
return error;
}
/*
* PURPOSE
* Get the affinity for a file
*/
int
GetAffinity(
int £ fd,
char *f filename)

uint8 t *cp;

int error = 0;
uinte4 t affinity;
int i;
error = CvApi GetAffinity(f fd, &affinity);
if (error == 0)
printf ("Affinity for file '%s' is : ", £ filename);

File System APl Guide

69

Appendix A: File System API Example

cp = (uint8 t *)&affinity;
for (i=0; i<8; i++) {

printf ("$c", *cp++);
printf ("\n") ;
return error;
n
* PURPOSE
* Set a file into concurrent write mode
*/
int
ConcWrite (
int £ fd,
char *f filename)
int error = 0;
error = CvApi SetConcWrite (f £fd);
if (error == 0)
printf ("File '%s' is now in concurrent write mode.
return error;
n
* PURPOSE
* Unset a file from concurrent write mode
*/
int
NoConcWrite (
int £ fd,
char *f filename)
int error = 0;
error = CvApi ClearConcWrite (f £fd);
if (error == 0)
printf ("File '%s' is now out of concurrent write mode.
return error;
L
* PURPOSE
* Print out info about a stripe group
*/
int
SgInfo(
int £ fd,
int f s9)
uinte4 t totblks;
uinté64_t freeblks;
uint32 t breadth;
uint32 t depth;
uint32 t flags;
uint32_t bsize;
char *junkbuf = NULL;
char sgbuf [SG_NAMELEN] ;
uinte4 t nativekeys[32];
70

n
1

f filename) ;

f filename);

File System APl Guide

Appendix A: File System API Example

uint32 tkeyent;

int error = 0;

uint32 ti;

if (ErrorFlag == 1) { /* ENOENT */
f sg = -1;

keycnt = 32;

if (ErrorFlag == 2) { /* EFAULT */
error = CvApi_GetSgInfo(f_ fd, f_sg,
&totblks, &freeblks, &breadth,
&depth, &flags, &bsize, junkbuf,
nativekeys, &keycnt);

else {
error = CvApi_GetSgInfo(f_fd, f_sg,
&totblks, &freeblks, &breadth,
&depth, &flags, &bsize, sgbuf,
nativekeys, &keycnt);

if (error)
return error;
printf ("Stripe group info for '$s' <%d>\n", sgbuf, f sg);
printf ("Total blocks " ARG64D " (" ARG64X ")\n", totblks, totblks);
printf ("free blocks " ARG64D " (" ARG64X ")\n", freeblks, freeblks);
printf ("Breadth %x depth %x bsize %d (0x%x)\n",
breadth, depth, bsize, bsize);
printf ("Flags (0x%x) ", flags);
if (flags & SG_PART VALID)
printf (" valid ");
if (flags & SG_PART ONLINE)
printf (" online ");
if (flags & SG_PART METADATA)
printf (" metadata ");
if (flags & SG_PART JOURNAL)

printf (" journal ");
if (flags & SG_PART EXCLUSIVE)
printf (" exclusive ");
printf ("\n") ;
for(i = 0; 1 < keyent; i++) {

char buf[9];

memcpy (&buf, &nativekeys[i], sizeof (nativekeys[i]));

buf[8] = '\0';

printf ("NativeKey[%d] = %s (%1lx)\n", i, buf, nativekeys[il]);

return error;

}
/*
* PURPOSE
* Print out disk info given a stripe group ordinal
*/
int
DiskInfo(
int £ fd,
int f s9)

CvDiskInfo t dinfo [MAXDISKS] ;

File System APl Guide 71

Appendix A: File System API Example

uint32_t ndisks;

int error;

ndisks = MAXDISKS;

error = CvApi GetDiskInfo(f fd, f sg, dinfo, (int *)e&ndisks);

if (!error)
int i, j;
printf ("Disk Info for Stripe group #%d:\n", f sg);
for(i = 0; i1 < (int)ndisks; i++)

printf ("\tDisk #%d: name=\"%s\" vhsize=%u nameloc=%u secsize=%u
serialnum=%s\n",
i, dinfo[i] .di name, dinfo[i].di vhsize,
dinfo[i] .di nameloc, dinfo[i] .di sectorsize,
dinfo[i] .di_serialnum) ;
for(j = 0; j < dinfo[i].di npaths; j++) {
printf ("\t\tpath[%d]: blkdev=%s, rawdev=%s\n",
J
dinfo[i] .di_paths[j].d bdev,
dinfo[i] .di_paths[j].d rdev);

}
}

return error;

}
/*
* PURPOSE
* Print out ordinal of stripe group
*/
int
SgOrdinal (
int £d,
char *sgname)
{
uint32 t sg;
char sgbuf [SG_NAMELEN] ;
char *junkbuf = NULL;
int error = 0;
if ((ErrorFlag == 1) || (ErrorFlag == 3)) { /* ENOENT */
sgbuf [0] = '\0';
else
strncpy (sgbuf, sgname, SG NAMELEN) ;
sgbuf [SG_NAMELEN - 1] = "\0"';
if (ErrorFlag == 2) { /* EFAULT */
error = CvApi GetSgName (fd, SG _GETNUM, &sg, junkbuf) ;
else {
error = CvApi GetSgName (fd, SG_GETNUM, &sg, sgbuf) ;
if (error)
return error;
printf ("Stripe group ordinal for '%s' : <%d>\n", sgname, sg);
return error;
}
/*
* PURPOSE
* Print out name of stripe group
*/
int

72 File System APl Guide

Appendix A: File System API Example

SgName (
int fd,
uint32_t sg)
{
char sgbuf [SG_NAMELEN] ;
char *junkbuf = NULL;
int error = 0;
if (ErrorFlag == 1) { /* ENOENT */
sgbuf [0] = '\0';
if ((ErrorFlag == 1) || (ErrorFlag == 3)) { /* ENOENT */
sg = -1; /* or */
/* EINVAL */
if (ErrorFlag == 2) { /* EFAULT */

error = CvApi GetSgName (fd, SG_GETNAME, &sg, junkbuf);

else {
error = CvApi GetSgName (fd, SG_GETNAME, &sg, sgbuf);

if (error)

return error;
printf ("Stripe group name for sg '%d' : <%s>\n", sg, sgbuf);
return error;

}
/*

* PURPOSE

* Set the read hole fail option for a file
*/
int

SetRDHoleFail (int £ £d)

int error = 0;
error = CvApi SetRdHoleFail (£ £d) ;
if (error)

return error;

printf ("File now in read hole fail mode\n") ;
return error;

}
/*
* PURPOSE
* Clear the read hole fail option for a file
*/
int

ClearRDHoleFail (int £ £d)

int error = 0;
error = CvApi ClearRdHoleFail (£ fd) ;
if (error) {

return error;

printf ("File cleared from read hole fail mode\n") ;
return error;

}/*
* PURPOSE
* Retrieve the version info

File System APl Guide

73

Appendix A: File System API Example

*/
int
GetVersionInfo(int £ fd)

int error = 0;
VerInfoReply tverinfo;
error = CvApi GetVerInfo(f fd, &verinfo);
if (error) {
return error;

printf ("Version string:\n %$s \n", verinfo.vr version);
printf ("Build string:\n %$s \n", verinfo.vr build);
printf ("Date string:\n %$s \n", verinfo.vr creationdate) ;
printf ("External API version: %d\n", verinfo.vr apiversion);
| return error;
int
SetQuota(int £ fd, char *f gquotaname)

int error;

error = CvApi_SetQuota(f_fd, QUOTA TYPE USER, f_ guotaname,
(uint64 t)12000000, (uinté64 t)10000000, 60);

return (error) ;

int
GetQuota (int £ fd, char *f gquotaname)

int error;
GetQuotaReply t grep;
error = CvApi GetQuota(f fd, QUOTA TYPE USER, f quotaname, &grep);
if (!error)
printf ("GetQuota results for %s:\n", £ quotaname) ;
printf ("hardlimit $11d\n", grep.gr hardlimit) ;
printf ("softlimit $11d\n", grep.gr softlimit);
printf ("cursize $11d\n", grep.gr cursize);
printf ("timelimit $u\n", grep.gr_timelimit) ;
printf ("timeout = %u\n", grep.gr timeout) ;

}

return (error) ;

)
int
SetFileSize(int £ fd, uinte64 t £ len)

int error;
error = CvApi_SetFileSize(f_fd, £ len);
return (error) ;

/*
* DURPOSE
* New Alloc space call
*
/
int
VerifyAlloc(
int £ _fd,
char *f filename,
uinte4 t f offset,
uinté64_t f nbytes,
uint32 t f flags)

74 File System APl Guide

Appendix A: File System API Example

{
uinte4 t offset, nbytes;
int error = 0;
offset = £ offset;
nbytes = f nbytes;
if (Verbose) {
printf ("Allocating space in '%$s' " ARG64D " bytes at offset "
ARG64D " (flags 0x%X)\n", f filename, nbytes, offset, £ flags);
1
error = CvApi VerifyAlloc(f fd, offset, nbytes, f flags);
if (error)
return error;
if (Verbose)
printf (ARG64D " bytes starting at offset " ARG64D " are allocated\n",
nbytes, offset);
1
return error;
}
/*
* PURPOSE
* Extract a value from the command line
*/
uinté4_t
Getval (
char *f arg)
{
uinté64_tval = 0;
val = strtoll(f arg, NULL, O0);
if (strrchr(f arg, 'k'))
val *= 1024;
else if (strrchr(f arg, 'm'))
val *= (1024 * 1024);
else if (strrchr(f arg, 'g'))
val *= (1024 * 1024 * 1024);
return val;
)
int
main (argc, argv)
int argc;
char *argv[];
char *filename, *cp;
char *sgname = NULL;
int c, error = 0;
int f£d;
uint32 t flags = 0;
uint32_t sg = 0;
uinte64 t offset, nbytes, affinity, size;
int AllocFlag, ExtentFlag, PunchFlag, StatFlag, InfoFlag;
int GetAffFlag, SetAffFlag, PhysFlag, ConcFlag, NoConcFlag;
int SgNameFlag, SgOrdinalFlag, SetRDHoleFlag, ClearRDHoleFlag;
int GetQuotaFlag, SetQuotaFlag, DiskFlag, PerfectFlag;
int StatPlusFlag, SetFileSizeFlag, StatFsFlag;
int VerifyAllocFlag, SetPerfectFitFlag;

File System APl Guide 75

Appendix A: File System API Example

char *quotauser = NULL;

int offset set, nbytes set, size set;

int openflags, VersFlag, LoadExtFlag, WaitFlag, OpenStatFlag;
char waitbuf [4] ;

Progname = argv[0];

if ((cp = strrchr(Progname, '/')) != NULL)

Progname = cp + 1;
AllocFlag = ExtentFlag = PunchFlag = StatFlag = InfoFlag = 0;
PhysFlag = GetAffFlag = SetAffFlag = ConcFlag = NoConcFlag = 0;

SgNameFlag = SgOrdinalFlag = SetRDHoleFlag = ClearRDHoleFlag 0;
GetQuotaFlag = SetQuotaFlag = DiskFlag = PerfectFlag = SetFileSizeFlag = 0;
VersFlag = LoadExtFlag = WaitFlag = OpenStatFlag = StatPlusFlag = 0
StatFsFlag = VerifyAllocFlag = SetPerfectFitFlag = 0;
size set = offset set = nbytes set = 0;

affinity = offset = nbytes = 0;

7

while ((c = getopt(argc, argv, "ABbCcD:EFfG:g:I:LOPpQ:g:RrSTa:1N:n:o0:svVwxYyZz:"))
= EOF)

switch (c)
case 'A':
AllocFlag = 1;
break;
case 'B':
StatFsFlag = 1;
break;
case 'b':
flags |= ALLOC_SETSIZE;
break;
case 'C':
ConcFlag = 1;
break;
case 'c':
NoConcFlag = 1;
break;
case 'D':
DiskFlag = 1;
sg = strtoul (optarg, NULL, O0);
break;
case 'E':
ExtentFlag
break;
case 'F':
SetAffFlag
break;
case 'f':
GetAffFlag
break;
case 'G':
SgOrdinalFlag = 1;
sg = strtoul (optarg, NULL, O0);
break;
case 'g':
SgNameFlag = 1;
sgname = optarg;
break;

1;

1;

1;

76 File System APl Guide

case 'I':

InfoFlag =

1;

sg = strtoul (optarg, NULL, O0);

break;
case 'L':

PhysFlag =

break;
case 'O':

OpenStatFlag

break;
case 'P':

PunchFlag

break;
case 'p':

1;

PerfectFlag

break;
case 'R':

= 1;

1;

= 1;

SetRDHoleFlag = 1;

break;
case 'r':

ClearRDHoleFlag = 1;

break;
case 'S':

StatFlag =

break;
case 'T':

StatPlusFlag

break;
case 'a':

/*

1;

= 1;

Appendix A: File System API Example

* It is important to remember that affinities are

* ASCII strings,

*/

if (strlen(optarg) > 8) {

fprintf (stderr,
"eight characters or less.");

Usage () ;

exit (2) ;

if ((strlen(optarg) == 1) && (optargl(0]

affinity = 0;
else {

strncpy ((char*) &affinity,

flags |= ALLOC_AFFINITY;
break;
case 'l':
flags |= ALLOC_LOAD EXT;
break;
case 'n':
nbytes = GetVal (optarg) ;
nbytes_set = 1;
break;
case 'N':
flags |= ALLOC_KEEPSIZE;

nbytes = GetVal (optarg) ;
nbytes set = 1;

File System APl Guide

so we have to special case

"The affinity type

argument must be "

{

strlen(optarg)) ;

77

Appendix A: File System API Example

break;
case 'o':
offset = GetVal (optarg) ;
offset set = 1;
flags [= ALLOC_OFFSET;
break;
case 'Q':
quotauser = optarg;
SetQuotaFlag++;
break;
case 'q':
quotauser = optarg;
GetQuotaFlag++;
break;
case 's':
flags |= ALLOC_STRIPE ALIGN;
break;
case 't':
flags |= ALLOC_PERFECTFIT;
break;
case 'v':
Verbose = 1;
break;
case 'V':
VersFlag = 1;
break;
case 'w':
WaitFlag = 1;
break;
case 'x':
LoadExtFlag = 1;
break;
case 'Y':
VerifyAllocFlag = 1;
break;
case 'y':
SetPerfectFitFlag = 1;
break;
case 'z':
size
size_set
break;
case 'Z':
SetFileSizeFlag = 1;
break;
case '?':
default:
Usage () ;
exit (2) ;

GetVal (optarg) ;
1;

if ((argc - optind) < 1) {
fprintf (stderr, "Must supply filename\n") ;
Usage () ;
exit (3);

}

filename = argv[optind];

78 File System APl Guide

Appendix A: File System API Example

if (AllocFlag “ VerifyAllocFlag ||

PunchFlag SetAffFlag || ConcFlag) {
openflags = O _RDWR O_CREAT;
} else

openflags = O RDONLY;

if ((fd = open(filename, openflags, 0777)) < 0) {
error = errno;
fprintf (stderr, "Can not open filename %s,

filename, strerror(error), error);
exit (error) ;

error '$s' (%d)\n",

if (AllocFlag) ({
/*

*

We used to check for 0 offset and size,
*

now we default to 0 for the offset
if the user says alloc zero bytes,
to verify we return an error

but
and
we need

*

*/
error = AllocSpace (fd, filename, offset, nbytes,
if (error) {

fprintf (stderr,

affinity, flags);

"Can not alloc " ARG64D " bytes in filename
error '%s' (%d)\n", nbytes, filename,
strerror (error), error) ;
exit (error) ;

o
%s, "

|

if (VerifyAllocFlag) ({
error = VerifyAlloc (£fd,

if (error) f{
fprintf (stderr,

n

filename, offset, nbytes, flags);

"Can not alloc " ARG64D " bytes in filename %s, "
error '%s' (%d)\n", nbytes, filename,

strerror (error), error) ;
exit (error) ;

if (SetPerfectFitFlag) {

error = TogglePerfectFitStatus(£fd,
if (error) {

fprintf (stderr,

filename) ;

"Can not get PerfectFit status for filename
error '%s' (%d)\n", filename,

strerror (error), error) ;
exit (error) ;

o
%s, "

if (PerfectFlag) {

error = PerfectFitStatus (fd,
if (error)

fprintf (stderr,

n

filename) ;

"Can not get PerfectFit status for filename %s, "
error '%s' (%d)\n", filename,

strerror (error), error) ;
exit (error) ;

if (PunchFlag) {
if ((offset_set == 0) ||

- (nbytes _set == 0)) {
fprintf (stderr,

"Must supply offset and number of bytes\n");

File System APl Guide 79

Appendix A: File System API Example

Usage() ;
exit (3);

error = PunchHole (fd, filename, offset, nbytes);

if (ExtentFlag) {
error = GetExtList (fd);

if (error) {
fprintf (stderr, "Can not get extent list for file '%s'"

" error '%$s' (%d)\n", filename,
strerror (error), error) ;
exit (error) ;

if (SetFileSizeFlag) ({

if (size_set == 0) ({
fprintf (stderr, "Must supply size\n");
Usage () ;
exit (3) ;

error = SetFileSize(fd, size);

if (error) {
fprintf (stderr, "Can not set size of "ARG64D" for file '%g'"

" error '%s' (%d)\n", size, filename,
strerror (error), error) ;
exit (error) ;

!
if (StatFlag) {
error = StatFile(fd, filename) ;
if (error) f{
fprintf (stderr, "Can not stat file '&%s'"
" error '%s' (%d)\n", filename,
strerror (error), error) ;
exit (error) ;

}

if (StatPlusFlag) {
error = StatFilePlus(fd, filename) ;

if (error) {
fprintf (stderr, "Can not do \"stat plus\" on file '%s'"
" error '%$s' (%d)\n", filename,
strerror (error), error) ;
exit (error) ;

if (StatFsFlag) {
error = StatFs(fd, filename) ;

if (error) ({
fprintf (stderr, "Can not do StatFs on file '&%s'"
" error '%$s' (%d)\n", filename,
strerror (error), error) ;
exit (error) ;

}

if (OpenStatFlag) {
error = OpenStatFile(fd, filename) ;

if (error) {

80 File System APl Guide

Appendix A: File System API Example

fprintf (stderr, "Can not open stat file '%s'"

" error '%s' (%d)\n", filename,
strerror (error), error) ;
exit (error) ;

if (SetAffFlag) {
if (Verbose)
printf ("Setting affinity in '$s' to " ARG64X "\n",
filename, affinity);

error = CvApi SetAffinity(fd, affinity);

if (error) {
"Can not set affinity for file '%s'"

fprintf (stderr,
" error '%$s' (%d)\n", filename,

strerror (error), error);
exit (error) ;

}

if (GetAffFlag) {
error = GetAffinity(fd, filename) ;

if (error) {
fprintf (stderr, "Can not get affinity for file '$s'"
" error '%$s' (%d)\n", filename,

strerror (error), error) ;
exit (error) ;

}
if (PhysFlag) {
if (offset_set == 0) {
fprintf (stderr, "Must supply offset \n");
Usage () ;
exit (3) ;

error = GetPhysLoc (fd, filename, offset);

if (error) {
"Can not get physical location for file

fprintf (stderr,
" error '%$s' (%d)\n", filename,

strerror (error), error) ;
exit (error) ;

°
lﬁslll

}
if (ConcFlag) {
error = ConcWrite (fd,
if (error) f{
"Can not perform concurrent writes for file

fprintf (stderr,
" error '%s' (%d)\n", filename,

strerror (error), error);
exit (error) ;

filename) ;

12aqtn
%S

if (NoConcFlag) {

error = NoConcWrite (fd, filename) ;
if (error) {
fprintf (stderr, "Can not clear concurrent writes for file '$s'"
" error '%s' (%d)\n", filename,

strerror (error), error) ;
exit (error) ;

File System APl Guide 81

Appendix A: File System API Example

82

if

}
if

}

(SetQuotaFlag) ({
error = SetQuota(fd, quotauser);
if (error)
fprintf (stderr, "Cannot set quota for user %s, error = %d\n"
quotauser, error) ;
exit (error) ;
} else
printf ("Quota for %s successfully set\n", quotauser) ;

(GetQuotaFlag) ({
error = GetQuota(fd, quotauser);
if (error)
fprintf (stderr, "Cannot get quota for user %s, error = %d\n"
quotauser, error) ;
exit (error) ;

(InfoFlag) {
error = SglInfo(fd, sg);
if (error)
fprintf (stderr, "Can not get stripe group info for %d"
" error '%s' (%d)\n", sg,
strerror (error), error) ;
exit (error) ;

(DiskFlag) {
error = DiskInfo(fd, sg9);
if (error) {
fprintf (stderr, "Can not get disk info for stripe group %d4d"
" error '%$s' (%d)\n", sg,
strerror (error), error) ;
exit (error) ;

(SgNameFlag) {
error = SgOrdinal (f£d, sgname) ;
if (error) f{
fprintf (stderr, "Can not get stripe group ordinal for %s"
" error '%s' (%d)\n", sgname,
strerror (error), error) ;
exit (error) ;

(8sgordinalFlag)
error = SgName (fd, sg);
if (error) {
fprintf (stderr, "Can not get stripe group name for %d4d"
" error '%$s' (%d)\n", sg,
strerror (error), error) ;
exit (error) ;

(SetRDHoleFlag) {
error = SetRDHoleFail (£d) ;

’

’

File System APl Guide

Appendix A: File System API Example

if (error) f{
fprintf (stderr, "Can not set RD Hole Fail for file '%s'"
" error '%s' (%d)\n", filename,
strerror (error), error) ;
exit (error) ;

if (ClearRDHoleFlag) {
error = ClearRDHoleFail (£d) ;
if (error) {
fprintf (stderr, "Can not clear RD Hole fail for file '%g'"
" error '%s' (%d)\n", filename,
strerror (error), error) ;
exit (error) ;

if (VersFlag) {
error = GetVersionInfo (fd) ;
if (error) f{
fprintf (stderr, "Can not retrieve version info "
" error '%s' (%d)\n",
strerror (error), error) ;
exit (error) ;

if (LoadExtFlag) {
error = LoadExtents(fd, filename, offset, nbytes);
if (error) {
fprintf (stderr, "Can not load " ARG64D " bytes in filename %s, "
" error '%$s' (%d)\n", nbytes, filename,
strerror (error), error) ;
exit (error) ;

if (WaitFlag) {

printf ("Waiting, press return to continue...\n");

fflush (stdout) ;

(void) fgets (waitbuf, sizeof (waitbuf), stdin);
return 0 ;

File System APl Guide 83

Appendix A: File System APl Example

84 File System API Guide

	Contents
	Introduction
	About This Guide
	Installing StorNext APIs
	Running APIs Remotely
	Explanation of Warnings, Cautions and Notes
	Quantum Service and Support

	StorNext File System APIs
	Allocation and Space Management APIs
	CvApi_AllocSpace
	Handle
	Notes
	Structure
	UNIX ioctl structure:
	reQuest Fields
	Reply Fields
	Error Returns

	CvApi_GetPerfectFitStatus
	Handle
	Notes
	Structure
	Reply Fields:
	Error Returns

	CvApi_PunchHole
	Handle
	Notes
	Structure
	reQuest fields
	Reply Fields

	CvApi_SetFileSize
	Handle
	Notes
	Structure
	reQuest Fields
	Error Returns

	CvAPI_VerifyAlloc
	Handle
	Notes
	Structure
	reQuest Fields
	Error Returns

	Quality of Service and Real Time I/O APIs
	CvApi_DisableRtio
	Handle
	Notes
	Structure

	CvApi_EnableRtio
	Handle
	Notes
	Structure
	Reply Fields

	CvApi_GetRtio
	Handle
	Notes
	Structure
	reQuest Fields
	Reply Fields

	CvApi_GetRtio_V3
	Handle
	Notes
	Structure
	reQuest Fields
	Reply Fields

	CvApi_QosClientStats
	Handle
	Notes
	Structure
	reQuest Fields
	Reply Fields
	Error Returns

	CvApi_QosClientStats_v3
	Handle
	Notes
	Structure
	reQuest Fields
	Reply Fields
	Error Returns

	CvApi_SetRtio
	Handle
	Notes
	Structure
	reQuest Fields
	Reply Fields
	Platform Dependencies

	File System Configuration and Location Management APIs
	CvApi_GetAffinity
	Handle
	Notes
	Structure
	Reply Fields

	CvApi_GetExtList
	Handle
	Notes
	Structure
	Fields, CvExternalExtent_t
	reQuest Fields
	Reply Fields
	Error Returns

	CvApi_GetPhysLoc
	Handle
	Notes
	Structure
	reQuest Fields
	Reply Fields

	CvApi_GetSgInfo
	Handle
	Notes
	Structure
	reQuest Fields
	Reply Fields
	Error Returns

	CvApi_GetSgName
	Handle
	Notes
	Structure
	UNIX ioctl structure
	reQuest Fields
	Reply Fields
	Error Returns

	CvApi_SetAffinity
	Handle
	Structure
	Request Fields

	Access Management APIs
	CvApi_ClearConcWrite
	Handle
	Notes
	Structure

	CvApi_ClearRdHoleFail
	Handle
	Notes
	Structure

	CvApi_CvFstat
	Handle
	Notes
	Structure
	Reply Fields:

	CvApi_CvOpenStat
	Handle
	Notes
	Structure

	CvApi_GetDiskInfo
	Handle
	Notes
	Structure
	Fields, CvDiskInfo_t
	reQuest Fields
	Error Returns

	CvApi_GetQuota
	Handle
	Notes
	Structure
	reQuest Fields
	Reply Fields
	Error Returns

	CvApi_GetVerInfo
	Handle
	Notes
	Structure
	Reply Fields

	CvApi_LoadExtents
	Handle
	Notes
	Structure
	reQuest Fields
	Error Returns

	CvApi_MoveRange
	Structure
	reQuest Fields
	Reply Fields
	Error Returns

	CvApi_SetConcWrite
	Handle
	Notes
	Structure

	CvApi_SetQuota
	Handle
	Notes
	Structure
	reQuest Fields
	Error Returns

	CvApi_SetRdHoleFail
	Handle
	Notes
	Structure

	CvApi_StatFs
	Handle
	Notes
	Structure
	Reply Fields
	Error Returns

	CvApi_StatPlus
	Handle
	Notes
	Structure
	Reply Fields
	Error Returns

	CvApi_SwapExtents
	Handle
	Notes
	Structure
	reQuest Fields
	Error Returns
	Appendix A

	File System API Example

